Bryła sztywna
W mechanice często zagadnienia ruchu odnoszą się do punktów materialnych albo do ich układów. W rzeczywistości mamy do czynienia jednak z obiektami o konkretnych rozmiarach (rozciągłymi) i właściwościach, dzięki którym ciała te bardzo różnie zachowują się pod wpływem działających na nie sił. Inaczej zachowuje się plastelina a inaczej szkło.
Bryła sztywna jest to ciało fizyczne, które pod wpływem działania sił zewnętrznych nie ulega odkształceniom.
Oznacza to, że jeżeli zbadamy dowolne dwa punkty podczas działania siły zewnętrznej, to ich odległość od siebie nie ulega zmianie w czasie działania tej siły.
W rzeczywistości nie ma idealnej bryły sztywnej. Każde ciało ulega pod wpływem działania sił zewnętrznych w różnych temperaturach różnym odkształceniom.
Istotne jest to, że dla bryły sztywnej wszystkie wnioski i zależności są słuszne jak dla układu punktów materialnych.
Inne zagadnienia z tej lekcji
Dynamika ruchu po okręgu
Na ciało doznające przyspieszenia dośrodkowego działa siła o stałej wartości i zwrócona do środka okręgu. Jest to siła dośrodkowa. W nieinercjalnym układzie odniesienia pojawia się szczególny przypadek siły bezwładności - siła odśrodkowa bezwładności.
Rodzaje ruchu bryły sztywnej
Rodzaje ruchu bryły sztywnej. Bryła sztywna z uwagi na to, iż jest rozciągła w przestrzeni, może poruszać się ruchem postępowym i obrotowym. Co to jest ruch postępowy? Co to jest ruch obrotowy brył sztywnej? Ilustracja ruchu postępowego i obrotowego.
Moment siły
Moment siły F względem punktu O osi obrotu jest to iloczyn wektorowy wektora wodzącego r punktu przyłożenia siły F i tej siły. Początek wektora r leży w punkcie O. Moment siły jest też nazywany inaczej momentem obrotowym, a wektor wodzący ramieniem siły. Jednostką momentu siły jest niutonometr.
Moment bezwładności
Definicja momentu bezwładności oraz tablica momentów bezwładności dla różnych brył. Moment bezwładności bryły względem danej osi nazywamy sumę iloczynu mas poszczególnych punktów bryły i kwadratów odległości od danej osi. Dla każdej bryły moment bezwładności może być inny.
Twierdzenie Steinera
Twierdzenie Steinera wraz z przykładem. Moment bezwładności I bryły względem dowolnej osi jest równy sumie momentu bezwładności I0 względem osi równoległej, przechodzącej przez środek masy bryły oraz iloczynu masy tej bryły i kwadratu odległości d obu osi.
Pierwsza zasada dynamiki ruchu obrotowego
Pierwsza zasada dynamiki ruchu obrotowego. Jeżeli na bryłę sztywną nie działają żadne momenty sił, to bryła ta pozostaje nieruchoma lub wykonuje ruch obrotowy jednostajny (ze stałą prędkością kątową).
Druga zasada dynamiki dla ruchu obrotowego
Druga zasada dynamiki dla ruchu obrotowego. Jeżeli wypadkowy moment sił, które działają na bryłę nie jest równy zeru, to bryła porusza się ruchem zmiennym obrotowym z przyspieszeniem kątowym, które jest wprost proporcjonalne do wypadkowego momentu sił.
Trzecia zasada dynamiki dla ruchu obrotowego
Trzecią zasadę dynamiki dla ruchu obrotowego można określić w następujący sposób: Jeżeli na bryłę A działa bryła B pewnym momentem siły, to bryła B działa na bryłę A momentem równym co do wartości, ale przeciwnie skierowanym.
Moment pędu
Moment pędu określamy nieco inaczej dla punktu materialnego, który porusza się ruchem po okręgu i inaczej dla bryły sztywnej, która porusza się ruchem obrotowym.
Ruch obrotowy - wzory
W niniejszym artykule zestawiono najważniejsze wzory i oznaczenia związane z ruchem obrotowym. W tabeli opisano oprócz wielkości związanych z ruchem obrotowym ich odpowiedniki w ruchu prostoliniowym.
© medianauka.pl, 2017-02-09, A-3464