Druga zasada dynamiki dla ruchu obrotowego

Drugą zasadę dynamiki dla ruchu obrotowego można określić w następujący sposób:

Jeżeli wypadkowy moment sił, które działają na bryłę nie jest równy zeru, to bryła porusza się ruchem zmiennym obrotowym z przyspieszeniem kątowym, które jest wprost proporcjonalne do wypadkowego momentu sił.

Powyższe można wyrazić za pomocą wzoru:

\vec{\varepsilon}=\frac{1}{I}\vec{M}

gdzie:

- przyspieszenie kątowe,

I - moment bezwładności,

\vec{M} - wypadkowy moment siły.

Przekształcając nieco powyższą zależność otrzymujemy:

\vec{M}=I\vec{\varepsilon}
Poziom zaawansowany

II zasadę możemy również wyrazić następująco:

Pochodna momentu pędu bryły względem czasu jest równa momentowi siły, jaki działa na tę bryłę.

\vec{M}=\frac{d\vec{L}}{dt}



Inne zagadnienia z tej lekcji

Dynamika ruchu po okręgu


Na ciało doznające przyspieszenia dośrodkowego działa siła o stałej wartości i zwrócona do środka okręgu. Jest to siła dośrodkowa. W nieinercjalnym układzie odniesienia pojawia się szczególny przypadek siły bezwładności - siła odśrodkowa bezwładności.

Bryła sztywna


co to jest bryła sztywna? Bryła sztywna jest to ciało fizyczne, które pod wpływem działania sił zewnętrznych nie ulega odkształceniom. Jest to jedynie pojęcie modelowe. W rzeczywistości nie ma idealnej bryły sztywnej. Dla bryły sztywnej wnioski i zależności są słuszne jak dla układu punktów materialnych.

Rodzaje ruchu bryły sztywnej


Rodzaje ruchu bryły sztywnej. Bryła sztywna z uwagi na to, iż jest rozciągła w przestrzeni, może poruszać się ruchem postępowym i obrotowym. Co to jest ruch postępowy? Co to jest ruch obrotowy brył sztywnej? Ilustracja ruchu postępowego i obrotowego.

Moment siły


Moment siły F względem punktu O osi obrotu jest to iloczyn wektorowy wektora wodzącego r punktu przyłożenia siły F i tej siły. Początek wektora r leży w punkcie O. Moment siły jest też nazywany inaczej momentem obrotowym, a wektor wodzący ramieniem siły. Jednostką momentu siły jest niutonometr.

Moment bezwładności


Definicja momentu bezwładności oraz tablica momentów bezwładności dla różnych brył. Moment bezwładności bryły względem danej osi nazywamy sumę iloczynu mas poszczególnych punktów bryły i kwadratów odległości od danej osi. Dla każdej bryły moment bezwładności może być inny.

Twierdzenie Steinera


Twierdzenie Steinera wraz z przykładem. Moment bezwładności I bryły względem dowolnej osi jest równy sumie momentu bezwładności I0 względem osi równoległej, przechodzącej przez środek masy bryły oraz iloczynu masy tej bryły i kwadratu odległości d obu osi.

Pierwsza zasada dynamiki ruchu obrotowego


Pierwsza zasada dynamiki ruchu obrotowego. Jeżeli na bryłę sztywną nie działają żadne momenty sił, to bryła ta pozostaje nieruchoma lub wykonuje ruch obrotowy jednostajny (ze stałą prędkością kątową).

Trzecia zasada dynamiki dla ruchu obrotowego


Trzecią zasadę dynamiki dla ruchu obrotowego można określić w następujący sposób: Jeżeli na bryłę A działa bryła B pewnym momentem siły, to bryła B działa na bryłę A momentem równym co do wartości, ale przeciwnie skierowanym.

Moment pędu


Moment pędu określamy nieco inaczej dla punktu materialnego, który porusza się ruchem po okręgu i inaczej dla bryły sztywnej, która porusza się ruchem obrotowym.

Ruch obrotowy - wzory


W niniejszym artykule zestawiono najważniejsze wzory i oznaczenia związane z ruchem obrotowym. W tabeli opisano oprócz wielkości związanych z ruchem obrotowym ich odpowiedniki w ruchu prostoliniowym.





© medianauka.pl, 2017-04-23, A-3504



Udostępnij
©® Media Nauka 2008-2025 r.