Drzewo prawdopodobieństwa (stochastyczne)
Gdy doświadczenie losowe jest wieloetapowe, a zdarzenia elementarne tworzą skomplikowany zbiór, można wówczas przy obliczaniu prawdopodobieństwa posłużyć się grafem, tak zwanym drzewem stochastycznym (probabilistycznym, prawdopodobieństwa). Krawędzie tego grafu odpowiadają zdarzeniom losowym, a wierzchołki poszczególnym etapom. Przy krawędziach zapisuje się prawdopodobieństwa poszczególnych zdarzeń, których suma na krawędziach wchodzących w skład jednego wierzchołka jest równa 1. Prawdopodobieństwo zdarzenia reprezentowanego przez daną gałąź drzewa jest równe iloczynowi prawdopodobieństw przyporządkowanym krawędziom, z których składa się dana gałąź (reguła iloczynów). Natomiast prawdopodobieństwo danego zdarzenia losowego opisanego przez kilka gałęzi drzewa jest równa sumie prawdopodobieństw tych gałęzi (reguła sum).
Przykład
Z pudełka, w którym jest 6 cukierków czekoladowych i 4 krówki losujemy kolejno bez zwracania 2 cukierki. Jakie jest prawdopodobieństwo wylosowania:
a) dwóch krówek.
b) dwóch cukierków o różnych smakach?
Niech \(C\) oznacza wylosowanie cukierka czekoladowego, \(K\) — krówki. Mamy tu dwa etapy: I — losujemy jednego cukierka, II — losujemy drugiego cukierka. Ponieważ nie zwracamy cukierków do pudełka po wylosowaniu, mamy następujące drzewo stochastyczne:
Jak obliczono poszczególne prawdopodobieństwa? W pudełku mamy 10 cukierków: 6 czekoladowych i 4 krówki. Prawdopodobieństwo wylosowania cukierka czekoladowego za pierwszym razem wynosi \(\frac{6}{10}\), natomiast krówki \(\frac{4}{10}\). Zostaje po pierwszym losowaniu już tylko 9 cukierków. A ile jest wśród nich krówek i czekoladowych? To zależy od tego, czy za pierwszym razem wylosowano krówkę, czy cukierka czekoladowego, stąd 4 różne przypadki.
a) Mamy obliczyć prawdopodobieństwo wylosowania dwóch krówek (zdarzenie \(A\)). Zobaczmy na nasze drzewko i zastosujmy regułę iloczynów:
\(P(A)=\frac{4}{10}\cdot \frac{3}{9}=\frac{12}{90}=\frac{4}{30}\)
a) Mamy obliczyć prawdopodobieństwo wylosowania cukierków o różnych smakach (zdarzenie \(B\)). Zobaczmy na nasze drzewko. Dwie gałęzie odpowiadają naszemu zdarzeniu. Obliczamy prawdopodobieństwo każdej z gałęzi i potem zastosujmy regułę sum:
\(P(B)=\frac{4}{10}\cdot \frac{6}{9}+\frac{6}{10}\cdot \frac{4}{9}=\frac{24}{90}+\frac{24}{90}=\frac{48}{90}=\frac{8}{15}\)
Zadania z rozwiązaniami
Zadanie nr 1.
Z urny zawierającej 8 kul czarnych i 4 białych losujemy kolejno bez zwracania dwie kule. Jakie jest prawdopodobieństwo wylosowania:
a) dwóch takich samych kul.
b) dwóch różnych kul.
c) kuli białej, a potem czarnej.
Zadanie nr 2.
Jakie jest prawdopodobieństwo, że pośród wylosowanych trzech osób z klasy liczącej 25 osób znajduje się jedna dziewczyna i dwóch chłopców? W klasie jest 12 dziewcząt.
Zadanie nr 3.
Dwie firmy wyprodukowały łącznie 5000 butów, przy czym firma pierwsza wyprodukowała ich 2000. Wśród butów wyprodukowanych przez pierwszą firmę jest 80% sandałów, a przez drugą firmę 65% butów to sandały. Losujemy jedną parę butów. Jakie jest prawdopodobieństwo wylosowania sandałów?
Zadanie nr 4 — maturalne.
W pierwszej urnie umieszczono 3 kule białe i 5 kul czarnych, a w drugiej urnie 7 kul białych i 2 kule czarne. Losujemy jedną kulę z pierwszej urny, przekładamy ją do urny drugiej i dodatkowo dokładamy do urny drugiej jeszcze dwie kule tego samego koloru, co wylosowana kula. Następnie losujemy dwie kule z urny drugiej. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że obie kule wylosowane z drugiej urny będą białe.
Zadanie nr 5 — maturalne.
W dwóch pudełkach umieszczono po pięć kul, przy czym w pierwszym pudełku: 2 kule białe i 3 kule czerwone, a w drugim pudełku: 1 kulę białą i 4 kule czerwone. Z pierwszego pudełka losujemy jedną kulę i bez oglądania wkładamy ją do drugiego pudełka. Następnie losujemy jedną kulę z drugiego pudełka. Oblicz prawdopodobieństwo wylosowania kuli białej z drugiego pudełka.
Zadanie nr 6 — maturalne.
Rzucamy dwa razy symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego oczka do sześciu oczek. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że co najmniej jeden raz wypadnie ścianka z pięcioma oczkami.
Zadanie nr 7 — maturalne.
Mamy dwie urny. W pierwszej są 3 kule białe i 7 kul czarnych, w drugiej jest jedna kula biała i 9 kul czarnych. Rzucamy symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek, od jednego oczka do sześciu oczek. Jeśli w wyniku rzutu otrzymamy ściankę z jednym oczkiem, to losujemy jedną kulę z pierwszej urny, w przeciwnym przypadku — losujemy jedną kulę z drugiej urny. Wtedy prawdopodobieństwo wylosowania kuli białej jest równe
A. 2/15
B. 1/5
C. 4/5
D. 13/5
Zadanie nr 8 — maturalne.
Dane są dwie urny z kulami. W każdej z urn jest siedem kul. W pierwszej urnie są jedna kula biała i sześć kul czarnych, w drugiej urnie są cztery kule białe i trzy kule czarne. Rzucamy jeden raz symetryczną monetą. Jeżeli wypadnie reszka, to losujemy jedną kulę z pierwszej urny, w przeciwnym przypadku – jedną kulę z drugiej urny. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy kulę białą w tym doświadczeniu, jest równe
A. \(\frac{5}{14}\)
B. \(\frac{9}{14}\)
C. \(\frac{5}{7}\)
D. \(\frac{6}{7}\)
Zadanie nr 9 — maturalne.
Tomek i Romek postanowili rozegrać między sobą pięć partii szachów. Prawdopodobieństwo wygrania pojedynczej partii przez Tomka jest równe \(\frac{1}{4}\). Oblicz prawdopodobieństwo wygrania przez Tomka co najmniej czterech z pięciu partii. Wynik podaj w postaci ułamka zwykłego nieskracalnego. Zapisz obliczenia.
Inne zagadnienia z tej lekcji
© medianauka.pl, 2011-08-13, A-1418