Efekt Comptona
Efekt Comptona, zjawisko Comptona jest to zjawisko rozpraszania kwantów promieniowania γ (gamma) oraz kwantów promieniowania rentgenowskiego na elektronach swobodnych lub słabo związanych. W wyniku rozpraszania kwant obniża swoją energię i zmienia kierunek rozchodzenia się. W wyniku zderzenia z kwantem promieniowania elektron uzyskuje energię kinetyczną, a długość fali fotonu zmienia się o wartość:
gdzie:
Δγ - przyrost długości fali fotonu - to tak zwane przesunięcie komptonowskie,
h - stała Plancka,
me - masa spoczynkowa elektronu,
c - prędkość światła,
Θ - kąt rozproszenia kwantu.
Efekt ma największe znaczenie przy energiach rzędu 0,5 MeV.
Znaczenie zjawiska Comptona
Zjawiska Comptona nie dało się wyjaśnić na gruncie klasycznej teorii falowej. Podobnie jak w zjawisku fotoelektrycznym zewnętrznym wyjaśnienie opierało się na założeniu, że światło ma charakter kwantowy. Doświadczenie potwierdza, że istnieją fotony jako skończone kwanty (porcje) energii.
Kwanty światła rozpraszają się w zderzeniach z pojedynczymi elektronami. Zarówno przed, jak i po zderzeniu zachowują się jak klasyczne cząstki, czyli strumień fotonów. Jednocześnie jednak w tym samym doświadczeniu pomiar energii (długości fali) rozproszonego promieniowania opierał się o wykorzystanie jego falowej natury (dyfrakcja).
Doświadczenie Comptona było pierwszym, a dziś jednym z najbardziej eleganckich doświadczeń, które demonstrują korpuskularną naturę promieniowania elektromagnetycznego.
Wkrótce dualizm korpuskularno-falowy stał się powszechnie uznaną koncepcją.
Inne zagadnienia z tej lekcji
Fizyka klasyczna a kwantowa
Mechanika kwantowa zajmuje się ruchem mikrocząstek i stanowi podstawę dla fizyki cząstek elementarnych, atomu, fizyki jądrowej, fizyki ciała stałego, chemii, astrofizyki. Mechanika zrywa z determinizmem, tak powszechnym w mechanice klasycznej.
Efekt fotoelektryczny
Efekt fotoelektryczny lub zjawisko fotoelektryczne zewnętrzne, fotoemisja elektronowa jest to zjawisko emisji elektronów z powierzchni metali pod wpływem światła (fali elektromagnetycznej) o odpowiedniej częstotliwości.
Dualizm korpuskularno-falowy
Światło i w ogóle fala elektromagnetyczna wykazuje dwoistość natury, czyli dualizm. Czasem zachowuje się jak cząstki materii, a znów innym razem jak fala.
Foton
Foton to kwant promieniowania elektromagnetycznego, w tym światła widzialnego. To pewna porcja światła. Foton jest cząstką elementarną, poruszającą się z prędkością światła o masie spoczynkowej równej zeru.
Fale de Broglie'a
W 1924 roku Luis de Broglie wysunął hipotezę, że dualizm korpuskularno-falowy dotyczy także cząstek materialnych. Czy zatem fale materii istnieją? Uczony założył, że nie ma powodu, dla którego wzór na pęd fotonów nie można by było zastosować dla cząstek materialnych - o ile uda się doświadczalnie potwierdzić falistą strukturę materii.
Zasada nieoznaczoności
Iloczyn niepewności pary wielkości fizycznych, które są kanonicznie sprzężone, jest nie mniejszy niż stała Plancka.
© medianauka.pl, 2020-04-26, A-3761