Permutacja
Co to jest permutacja? Oto definicja.
Permutacja zbioru \(n\)-elementowego jest to każdy ciąg \(n\)-wyrazowy utworzony ze wszystkich elementów tego zbioru.
Permutację tworzymy w przypadkach, gdy z elementów zbioru utworzymy ciąg, czyli gdy porządkujemy te elementy. Zobaczmy to na przykładzie.
Przykłady
- Dany jest zbiór dwuelementowy {1,2}. Możemy elementy tego zbioru ustawić na dwa sposoby: \((1,2) i (2,1)\). Możliwe są dwie permutacje zbioru {1,2}.
- Dany jest zbiór {a,b,c}. Możemy elementy tego zbioru ustawić na sześć sposobów:
\((a,b,c),(a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a)\). Możliwych jest sześć permutacji zbioru {a,b,c}.
Liczba permutacji
Niech \(P_n\) oznacza liczbę permutacji zbioru \(n\)-elementowego. Liczba permutacji zbioru \(n\)-elementowego wyraża się wzorem:
Powyższy wzór na liczbę permutacji wykorzystamy w poniższych przykładach.
Przykład 1
Wypisaliśmy już w powyższych przykładach wszystkie permutacje zbioru dwuelementowego i trzyelementowego. Teraz policzmy je z wykorzystaniem wzoru.
\(P_2=2!=2\)
\(P_3=3!=6\)
Przykład 2
Pod ścianą policjant ma ustawić pięciu podejrzanych. Na ile sposobów może to uczynić?
Tworzymy permutacje zbioru pięcioelementowego, a ich liczbę obliczamy z powyższego wzoru.
\(P_5=5!=1\cdot 2\cdot 3\cdot 4\cdot 5=120\)
Zatem policjant może pięciu podejrzanych ustawić pod ścianą aż na 120 sposobów.
Kalkulator
Kalkulator — Permutacje zbioru \(n\)-elementowego
W tym miejscu możesz obliczyć permutacje zbioru \(n\)-elementowego. Pamiętaj, aby podać liczbę naturalną.
Wpisz liczbę elementów danego zbioru:Zadania z rozwiązaniami
Zadanie nr 1.
Ile liczb pięciocyfrowych o różnych cyfrach można utworzyć z cyfr \(1,2,3,4,5\)?
Zadanie nr 2.
W wyścigu chartów bierze udział sześć psów. Zakład polega na wytypowaniu właściwej kolejności psów na mecie (przy założeniu, że wszystkie dobiegają do mety i nie ma remisu). Ile zakładów trzeba zawrzeć, aby mieć pewność wygranej?
Zadanie nr 3.
Z ilu elementów składa się zbiór \(A\), jeżeli liczba jego permutacji jest 20 razy mniejsza od liczby permutacji tego samego zbioru uzupełnionego o dwa dodatkowe elementy?
Zadanie nr 4.
Malarz chce namalować tęcze z wykorzystaniem wszystkich możliwych konfiguracji kolejności występowania jej siedmiu podstawowych kolorów. Ile tęcz malarz musi namalować?
Inne zagadnienia z tej lekcji
© medianauka.pl, 2009-08-21, A-298
Data aktualizacji artykułu: 2023-07-23