Proste prostopadłe w przestrzeni

Dwie proste w przestrzeni są prostopadłe, jeżeli dowolny wektor niezerowy zawarty w jednej prostej i dowolny wektor niezerowy w drugiej prostej tworzą kąt prosty.

Zauważ, że prostopadłość prostych w przestrzeni różni się od prostopadłości prostych na płaszczyźnie, gdyż w przestrzeni dwie proste prostopadłe nie muszą się wcale przecinać. Ilustruje to poniższy rysunek.

Proste \(a, b, c\) są prostopadłe do \(k\), ale tylko prosta \(b\) przecina \(k\).

prostopadłość w przestrzeni

Prosta w przestrzeni jest prostopadła do płaszczyzny, jeżeli jest prostopadła do każdej prostej zawartej w tej płaszczyźnie.

Twierdzenie

Jeżeli prosta \(k\) jest prostopadła do prostych przecinających się \(a, b\) zawartych w pewnej płaszczyźnie, to prosta \(k\) jest prostopadła do tej płaszczyzny.





Inne zagadnienia z tej lekcji


© medianauka.pl, 2011-08-03, A-1398
Data aktualizacji artykułu: 2023-06-30



Udostępnij
©® Media Nauka 2008-2023 r.