Zadania — bryły

Znajdziesz tutaj zadania ze stereometrii, w tym własności brył, pola powierzchni całkowitej, objętości. Są tu bryły obrotowe i wielościany. To zadania z rozwiązaniami. Są tu zadania autorskie oraz maturalne na poziomie podstawowym i rozszerzonym z kilku ostatnich lat.


Zadanie nr 1.

Jaka jest długość krawędzi ośmiościanu foremnego, jeżeli jego objętość jest równa \(\frac{\sqrt{2}}{3}\)?

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Oblicz pole powierzchni ośmiościanu foremnego, którego objętość jest równa \(9\sqrt{2}\).

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Ile razy więcej wody można wlać do naczynia w kształcie dwunastościanu foremnego niż do naczynia w kształcie ośmiościanu foremnego o takiej samej długości krawędzi?

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Jak wykonać siatkę ośmiościanu foremnego o objętości 1 cm3?

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Ile osób może zagłosować, używając kulek o średnicy 1 cm, wrzucając je do urny o wymiarach 1 m x 1 m x 1 m?

Pokaż rozwiązanie zadania.

Zadanie nr 6.

Przekątna sześcianu ma długość równą \(\sqrt{3}\). Oblicz objętość tego sześcianu.

Pokaż rozwiązanie zadania.

Zadanie nr 7.

Oblicz objętość i pole powierzchni czworościanu foremnego o krawędzi długości \(2\sqrt{3}\).

Pokaż rozwiązanie zadania.

Zadanie nr 8.

Narysować siatkę czworościanu foremnego o objętości 5 cm3.

Pokaż rozwiązanie zadania.

Zadanie nr 9.

Oblicz objętość czworościanu foremnego, którego wysokość ma długość 2.

Pokaż rozwiązanie zadania.

Zadanie nr 10.

Pole powierzchni czworościanu foremnego jest równe 3. Jaka jest jego objętość?

Pokaż rozwiązanie zadania.

Zadanie nr 11.

Obliczyć pole powierzchni i objętość kuli o średnicy 18 cm.

Pokaż rozwiązanie zadania.

Zadanie nr 12.

Z trzech pełnych kul, każdej o promieniu 10 cm, przelano wodę do jednej kuli o promieniu 30 cm. W jakiej części większa kula zapełni się wodą?

Pokaż rozwiązanie zadania.

Zadanie nr 13.

Dany jest walec o wysokości 10 cm i promieniu podstawy 4 cm. Obliczyć jego objętość i pole powierzchni.

Pokaż rozwiązanie zadania.

Zadanie nr 14.

Jaki promień podstawy musi mieć naczynie w kształcie walca o wysokości 30 cm, aby zmieścić w nim 3 litry mleka?

Pokaż rozwiązanie zadania.

Zadanie nr 15.

Dany jest stożek o promieniu podstawy 2 cm i wysokości 6 cm. Oblicz jego objętość i pole powierzchni.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 16 - maturalne.

Kąt rozwarcia stożka ma miarę 120°, a tworzącą tego stożka ma długość 4. Objętość tego stożka jest równa

A. \(36\pi\)

B. \(18\pi\)

C. \(24\pi\)

D. \(8\pi\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 17 - maturalne.

Przekątna podstawy graniastosłupa prawidłowego czworokątnego jest dwa razy dłuższa od wysokości graniastosłupa. Graniastosłup przecięto płaszczyzną przechodzącą przez przekątną podstawy i jeden wierzchołek drugiej podstawy (patrz rysunek).

Ilustracja do zadania nr 24, matura z matematyki 2016, poziom podstawowy

Płaszczyzna przekroju tworzy z podstawą graniastosłupa kąt α o mierze

A. 30°

B. 45°

C. 60°

D. 75°

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 18 - maturalne.

Podstawą ostrosłupa prawidłowego trójkątnego \(ABCS\) jest trójkąt równoboczny \(ABC\). Wysokość \(SO\) tego ostrosłupa jest równa wysokości jego podstawy. Objętość tego ostrosłupa jest równa 27. Oblicz pole powierzchni bocznej ostrosłupa \(ABCS\) oraz cosinus kąta, jaki tworzą wysokość ściany bocznej i płaszczyzna podstawy ostrosłupa.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 19 - maturalne.

W ostrosłupie prawidłowym czworokątnym \(ABCDS\) o podstawie \(ABCD\) wysokość jest równa 5, a kąt między sąsiednimi ścianami bocznymi ostrosłupa ma miarę 120°. Oblicz objętość tego ostrosłupa.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 20 - maturalne.

W graniastosłupie prawidłowym czworokątnym \(EFGHIJKL\) wierzchołki \(E, G, L\) połączono odcinkami (tak jak na rysunku).

wzór

Wskaż kąt między wysokością \(OL\) trójkąta \(EGL\) i płaszczyzną podstawy tego graniastosłupa.

A. \(\angle HOL\)

B. \(\angle OGL\)

C. \(\angle HLO\)

D. \(\angle OHL\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 21 - maturalne.

Przekrojem osiowym stożka jest trójkąt równoboczny o boku długości 6 . Objętość tego stożka jest równa:

A. \(27\pi \sqrt{3}\)

B. \(9\pi \sqrt{3}\)

C. \(18\pi\)

D. \(6\pi\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 22 - maturalne.

Każda krawędź graniastosłupa prawidłowego trójkątnego ma długość równą 8 . Pole powierzchni całkowitej tego graniastosłupa jest równe:

A. \(\frac{8^2}{3}(\frac{\sqrt{3}}{2}+3)\)

B. \(8^2\cdot \sqrt{3}\)

C. \(\frac{8^2\sqrt{6}}{3}\)

D. \(8^2(\frac{\sqrt{3}}{2}+3)\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 23 - maturalne.

Wysokość graniastosłupa prawidłowego czworokątnego jest równa 16. Przekątna graniastosłupa jest nachylona do płaszczyzny jego podstawy, pod kątem którego cosinus jest równy 3/5. Oblicz pole powierzchni całkowitej tego graniastosłupa.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 24 - maturalne.

Podstawą ostrosłupa \(ABCDS\) jest kwadrat \(ABCD\). Krawędź boczna \(SD\) jest wysokością ostrosłupa, a jej długość jest dwa razy większa od długości krawędzi podstawy. Oblicz sinus kąta między ścianami bocznymi \(ABS\) i \(CBS\) tego ostrosłupa.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 25 - maturalne.

Rozpatrujemy wszystkie stożki, których przekrojem osiowym jest trójkąt o obwodzie 20. Oblicz wysokość i promień podstawy tego stożka, którego objętość jest największa. Oblicz objętość tego stożka.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 26 - maturalne.

Jeżeli ostrosłup ma 10 krawędzi, to liczba ścian bocznych jest równa:

A. 5

B. 7

C. 8

D. 10

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 27 - maturalne.

Stożek i walec mają takie same podstawy i równe pola powierzchni bocznych. Wtedy tworząca stożka jest:

A. sześć razy dłuższa od wysokości walca.

B. trzy razy dłuższa od wysokości walca.

C. dwa razy dłuższa od wysokości walca.

D. równa wysokości walca.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 28 - maturalne.

Pole powierzchni całkowitej prostopadłościanu jest równe 198. Stosunki długości krawędzi prostopadłościanu wychodzących z tego samego wierzchołka prostopadłościanu to \(1:2:3\). Oblicz długość przekątnej tego prostopadłościanu.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 29 - maturalne.

Przekątne sąsiednich ścian bocznych prostopadłościanu wychodzące z jednego wierzchołka tworzą z jego podstawą kąty o miarach \(\frac{\pi}{3}\) i \(\alpha\). Cosinus kąta między tymi przekątnymi jest równy \(\frac{\sqrt{6}}{4}\). Wyznacz miarę kąta \(\alpha\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 30 - maturalne.

Podstawą ostrosłupa jest kwadrat \(KLMN\) o boku długości \(4\). Wysokością tego ostrosłupa jest krawędź \(NS\), a jej długość też jest równa \(4\) (zobacz rysunek).

rysunek

Kąt \(\alpha\), jaki tworzą krawędzie \(KS\) i \(MS\), spełnia warunek

  1. \(\alpha=45°\)
  2. \(45°<\alpha <60°\)
  3. \(\alpha >60°\)
  4. \(\alpha =60°\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 31 - maturalne.

Podstawą graniastosłupa prostego jest prostokąt o bokach długości 3 i 4. Kąt α , jaki przekątna tego graniastosłupa tworzy z jego podstawą, jest równy 45° (zobacz rysunek).

rysunek

Wysokość graniastosłupa jest równa

  1. \(5\)
  2. \(3\sqrt{2}\)
  3. \(5\sqrt{2}\)
  4. \(\frac{5\sqrt{3}}{3}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 32 - maturalne.

Na rysunku przedstawiono bryłę zbudowaną z walca i półkuli. Wysokość walca jest równa \(r\) i jest taka sama jak promień półkuli oraz taka sama jak promień podstawy walca.

rysunek

Objętość tej bryły jest równa

A. \(\frac{5}{3\pi r^3}\)

B. \(\frac{4}{3\pi r^3}\)

C. \(\frac{2}{3\pi r^3}\)

D. \(\frac{1}{3\pi r^3}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 33 - maturalne.

Dany jest graniastosłup prawidłowy trójkątny (zobacz rysunek). Pole powierzchni całkowitej tego graniastosłupa jest równe \(45\sqrt{3}\). Pole podstawy graniastosłupa jest równe polu jednej ściany bocznej. Oblicz objętość tego graniastosłupa.

rysunek

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 34 - maturalne.

Przekrój ostrosłupa prawidłowego trójkątnego \(ABCS\) płaszczyzną przechodzącą przez wierzchołek S i wysokości dwóch ścian bocznych jest trójkątem równobocznym. Krawędź boczna tego ostrosłupa ma długość \(\frac{4\sqrt{3}}{3}\). Oblicz objętość tego ostrosłupa.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 35 - maturalne.

Promień \(AS\) podstawy walca jest równy połowie wysokości \(OS\) tego walca. Sinus kąta \(OAS\) (zobacz rysunek) jest równy

Rysunek

A. \(\frac{\sqrt{5}}{2}\)

B. \(\frac{2\sqrt{5}}{5}\)

C. \(\frac{1}{2}\)

D. \(1\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 36 - maturalne.

Podstawą ostrosłupa prawidłowego czworokątnego \(ABCDS\) jest kwadrat \(ABCD\). Wszystkie ściany boczne tego ostrosłupa są trójkątami równobocznymi.

rysunek

Miara kąta SAC jest równa

A. 90°

B. 75°

C. 60°

D. 45°

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 37 - maturalne.

Długość krawędzi podstawy ostrosłupa prawidłowego czworokątnego jest równa 6. Pole powierzchni całkowitej tego ostrosłupa jest cztery razy większe od pola jego podstawy. Kąt \(\alpha\) jest kątem nachylenia krawędzi bocznej tego ostrosłupa do płaszczyzny podstawy (zobacz rysunek). Oblicz cosinus kąta \(\alpha\).

Rysunek

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 38 - maturalne.

Podstawą ostrosłupa \(ABCDS\) jest prostokąt \(ABCD\), którego boki mają długości \(|AB|=32\) i \(|BC|=18\). Ściany boczne \(ABS\) i \(CDS\) są trójkątami przystającymi i każda z nich jest nachylona do płaszczyzny podstawy ostrosłupa pod kątem \(\alpha\). Ściany boczne \(BCS\) i \(ADS\) są trójkątami przystającymi i każda z nich jest nachylona do płaszczyzny podstawy pod kątem \(\beta\) . Miary kątów \(\alpha\) i \(\beta\) spełniają warunek: \(\alpha+\beta=90°\). Oblicz pole powierzchni całkowitej tego ostrosłupa.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 39 - maturalne.

Przekątna sześcianu ma długość \(4\sqrt{3}\). Pole powierzchni tego sześcianu jest równe

A. 96

B. \(24\sqrt{3}\)

C. 192

D. \(16\sqrt{3}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 40 - maturalne.

Dwa stożki o takich samych podstawach połączono podstawami w taki sposób jak na rysunku. Stosunek wysokości tych stożków jest równy 3:2 . Objętość stożka o krótszej wysokości jest równa 12 cm3 .

Zadanie 25, matura 2020

Objętość bryły utworzonej z połączonych stożków jest równa

A. 20 cm3

B. 30 cm3

C. 39 cm3

D. 52,5 cm3

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 41 - maturalne.

Dany jest ostrosłup prawidłowy czworokątny \(ABCDS\), którego krawędź boczna ma długość 6 (zobacz rysunek). Ściana boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy, pod kątem którego tangens jest równy \(\sqrt{7}\). Oblicz objętość tego ostrosłupa.

Rysunek do zadania 34, matura 2022

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 42 - maturalne.

Podstawą ostrosłupa czworokątnego ABCDS jest trapez \(ABCD (AB||CD)\). Ramiona tego trapezu mają długości \(AD=10\) i \(BC=16\), a miara kąta \(ABC\) jest równa 30°. Każda ściana boczna tego ostrosłupa tworzy z płaszczyzną podstawy kąt α, taki, że \(tg\alpha =\frac{9}{2}\). Oblicz objętość tego ostrosłupa.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 43 - maturalne.

Podstawą graniastosłupa prostego jest romb o przekątnych długości 7 cm i 10 cm. Wysokość tego graniastosłupa jest krótsza od dłuższej przekątnej rombu o 2 cm. Wtedy objętość graniastosłupa jest równa

A. \(560\ cm^3\)

B. \(280\ cm^3\)

C. \(\frac{280}{3} cm^3\)

D. \(\frac{560}{3} cm^3\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 44 - maturalne.

Dany jest sześcian \(ABCDEFG\) o krawędzi długości \(a\). Punkty \(E, F, G, B\) są wierzchołkami ostrosłupa \(EFGB\) (zobacz rysunek).

Zadanie 26, matematyka, matura 2022

Pole powierzchni całkowitej ostrosłupa \(EFGB\) jest równe

A. \(a^2\)

B. \(\frac{3\sqrt{3}}{2}\cdot a^2\)

C. \(\frac{3}{2}\cdot a^2\)

D. \(\frac{3+\sqrt{3}}{2}\cdot a^2\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 45 - maturalne.

Dany jest graniastosłup prosty \(ABCDEFGH\) o podstawie prostokątnej \(ABCD\). Przekątne \(AH\) i \(AF\) ścian bocznych tworzą kąt ostry o mierze \(\alpha\) takiej, że \(\sin{\alpha}=\frac{12}{13}\) (zobacz rysunek). Pole trójkąta \(AFH\) jest równe 26,4. Oblicz wysokość \(h\) tego graniastosłupa.

Matura 2022, zadanie 13

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 46 - maturalne.

Dany jest graniastosłup prawidłowy czworokątny, w którym krawędź podstawy ma długość 15. Przekątna graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem \(\alpha\) takim, że \(\cos{\alpha}=\frac{\sqrt{2}}{3}\). Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Długość przekątnej tego graniastosłupa jest równa

A. \(15\sqrt{2}\)

B. \(45\)

C. \(5\sqrt{2}\)

D. \(10\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 47 - maturalne.

Dany jest ostrosłup prawidłowy czworokątny. Wysokość ściany bocznej tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem 30° i ma długość równą 6 (zobacz rysunek).

Zadanie 26, matematyka, matura 2023

Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa. Zapisz obliczenia.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 48 - maturalne.

W pewnym ostrosłupie prawidłowym stosunek liczby \(W\) wszystkich wierzchołków do liczby \(K\) wszystkich krawędzi jest równy \(\frac{W}{K}=\frac{3}{5}\). Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Podstawą tego ostrosłupa jest

A. kwadrat.

B. pięciokąt foremny.

C. sześciokąt foremny.

D. siedmiokąt foremny.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 49 - maturalne.

Dany jest sześcian \(ABCDEFGH\) o krawędzi długości 6. Punkt \(S\) jest punktem przecięcia przekątnych \(AH\) i \(DE\) ściany bocznej \(ADHE\) (zobacz rysunek).

Zadanie 7, matura z matematyki rozszerzona 2023

Oblicz wysokość trójkąta \(SBH\) poprowadzoną z punktu \(S\) na bok \(BH\) tego trójkąta. Zapisz obliczenia.

Pokaż rozwiązanie zadania.





Liczba odnalezionych zadań w zbiorze: 49.

Oznaczenia

zadanie maturalne Zadania maturalne — poziom podstawowy. zadanie maturalne Zadania maturalne — poziom rozszerzony.

Zbiór zadań z matematyki
Zbiór wszystkich zadań z matematyki wraz z pełnymi rozwiązaniami.
AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.
Stereometria
Stereometria to dział geometrii, który bada figury geometryczne i związki między nimi w przestrzeni. Jest to geometria przestrzeni trójwymiarowej.

 



Udostępnij
©® Media Nauka 2008-2025 r.