Zadania — matura 2015, matematyka, poziom podstawowy

Zadania maturalne z roku 2015 z matematyki - poziom podstawowy. Są to zadania z arkuszy egzaminacyjnych wraz z rozwiązaniami.


zadanie maturalne

Zadanie nr 1 - maturalne.

Tangens kąta \(\alpha\) zaznaczonego na rysunku jest równy:

wykres

A. \(-\frac{\sqrt{3}}{3}\)

B. \(-\frac{4}{5}\)

C. \(-1\)

D. \(-\frac{5}{4}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 2 - maturalne.

Wskaż rysunek, na którym przedstawiono przedział, będący zbiorem wszystkich rozwiązań nierówności \(-4\leq x-1\leq 4\).

rysunek

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 3 - maturalne.

Dane są liczby \(a=-\frac{1}{27},\ b=\log_{\frac{1}{4}}{64},\ c=\log_{\frac{1}{3}}{27}\). Iloczyn \(abc\) jest równy:

A. \(-9\)

B. \(-\frac{1}{3}\)

C. \(\frac{1}{3}\)

D. \(3\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 4 - maturalne.

Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 4% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19%. Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

A. \(1000\cdot (1-\frac{81}{100}\cdot \frac{4}{100})\)

B. \(1000\cdot (1+\frac{19}{100}\cdot \frac{4}{100})\)

C. \(1000\cdot (1+\frac{81}{100}\cdot \frac{4}{100})\)

D. \(1000\cdot (1-\frac{19}{100}\cdot \frac{4}{100})\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 5 - maturalne.

Równość \(\frac{m}{5-\sqrt{5}}=\frac{5+\sqrt{5}}{5}\) zachodzi dla:

A. \(m=5\)

B. \(m=4\)

C. \(m=1\)

D. \(m=-5\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 6 - maturalne.

Układ równań

\(\begin{cases}x-y=3\\ 2x+0,5y=4 \end{cases}\)

opisuje w układzie współrzędnych na płaszczyźnie:

A. zbiór pusty.

B. dokładnie jeden punkt.

C. dokładnie dwa różne punkty.

D. zbiór nieskończony.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 7 - maturalne.

Suma wszystkich pierwiastków równania \((x+3)(x+7)(x-11)=0\) jest równa:

A. \(-1\)

B. \(21\)

C. \(1\)

D. \(-21\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 8 - maturalne.

Równanie \(\frac{x-1}{x+1}=x-1\):

A. ma dokładnie jedno rozwiązanie: \(x=1\).

B. ma dokładnie jedno rozwiązanie: \(x=0\).

C. ma dokładnie jedno rozwiązanie: \(x=-1\).

D. ma dokładnie dwa rozwiązania: \(x=0, x=1\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 9 - maturalne.

Na rysunku przedstawiono wykres funkcji \(f\).

zadanie maturalne 2015, zadanie 8

Zbiorem wartości funkcji \(f\) jest

A. \((-2,2)\)

B. \([-2,2)\)

C. \([-2,2]\)

D. \((-2,2]\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 10 - maturalne.

Na wykresie funkcji liniowej określonej wzorem \(f(x)=(m-1)x+3\) leży punkt \(S=(5,-2)\). Zatem:

A. \(m=-1\)

B. \(m=0\)

C. \(m=1\)

D. \(m=2\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 11 - maturalne.

Funkcja liniowa f określona wzorem \(f(x)=2x+b\) ma takie samo miejsce zerowe, jakie ma funkcja liniowa \(g(x)=-3x+4\). Stąd wynika, że

A. \(b=4\)

B. \(b=-\frac{3}{2}\)

C. \(b=-\frac{8}{3}\)

D. \(b=\frac{4}{3}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 12 - maturalne.

Funkcja kwadratowa określona jest wzorem \(f(x)=x^2+x+c\). Jeżeli \(f(3)=4\), to:

A. \(f(1)=-6\)

B. \(f(1)=0\)

C. \(f(1)=6\)

D. \(f(1)=18\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 13 - maturalne.

Ile liczb całkowitych x spełnia nierówność \(\frac{2}{7}<\frac{x}{14}<\frac{4}{3}\) ?

A. 14

B. 15

C. 16

D. 17

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 14 - maturalne.

W rosnącym ciągu geometrycznym \((a_n)\) , określonym dla \(n\geq 1\), spełniony jest warunek \(a_4=3a_1\). Iloraz \(q\) tego ciągu jest równy:

A. \(q=\frac{1}{3}\)

B. \(q=\frac{1}{\sqrt[3]{3}}\)

C. \(q=\sqrt[3]{3}\)

D. \(q=3\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 15 - maturalne.

Jeżeli \(0°<\alpha <90°\) oraz \(tg\alpha=2\sin{\alpha}\), to:

A. \(\cos{\alpha}=\frac{1}{2}\)

B. \(\cos{\alpha}=\frac{\sqrt{2}}{2}\)

C. \(\cos{\alpha}=\frac{\sqrt{3}}{2}\)

D. \(\cos{\alpha}=1\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 16 - maturalne.

Miara kąta wpisanego w okrąg jest o \(20°\) mniejsza od miary kąta środkowego opartego na tym samym łuku. Wynika stąd, że miara kąta wpisanego jest równa:

A. \(5°\)

B. \(10°\)

C. \(20°\)

D. \(30°\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 17 - maturalne.

Pole rombu o obwodzie 8 jest równe 1. Kąt ostry tego rombu ma miarę \(\alpha\). Wtedy:

A. \(14°<\alpha< 15°\)

B. \(29°<\alpha< 30°\)

C. \(60°<\alpha< 61°\)

D. \(75°<\alpha< 76°\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 18 - maturalne.

Prosta l o równaniu \(y=m^2x+3\) jest równoległa do prostej k o równaniu \(y=(4m-4)x-3\). Zatem:

A. \(m=2\)

B. \(m=-2\)

C. \(m=-2-2\sqrt{2}\)

D. \(m=-2+2\sqrt{2}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 19 - maturalne.

Proste o równaniach: \(y=2mx-m^2-1\) oraz \(y=4m^2x+m^2+1\) są prostopadłe dla:

A. \(m=-\frac{1}{2}\)

B. \(m=\frac{1}{2}\)

C. \(m=1\)

D. \(m=2\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 20 - maturalne.

Dane są punkty \(M = (-2,1), N = (-1,3)\). Punkt \(K \)jest środkiem odcinka \(MN\). Obrazem punktu \(K\) w symetrii względem początku układu współrzędnych jest punkt:

A. \(K'=(2,-\frac{3}{2})\)

B. \(K'=(2,\frac{3}{2})\)

C. \(K'=(\frac{3}{2},2)\)

D. \(K'=(\frac{3}{2},-2)\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 21 - maturalne.

W graniastosłupie prawidłowym czworokątnym \(EFGHIJKL\) wierzchołki \(E, G, L\) połączono odcinkami (tak jak na rysunku).

wzór

Wskaż kąt między wysokością \(OL\) trójkąta \(EGL\) i płaszczyzną podstawy tego graniastosłupa.

A. \(\angle HOL\)

B. \(\angle OGL\)

C. \(\angle HLO\)

D. \(\angle OHL\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 22 - maturalne.

Przekrojem osiowym stożka jest trójkąt równoboczny o boku długości 6 . Objętość tego stożka jest równa:

A. \(27\pi \sqrt{3}\)

B. \(9\pi \sqrt{3}\)

C. \(18\pi\)

D. \(6\pi\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 23 - maturalne.

Każda krawędź graniastosłupa prawidłowego trójkątnego ma długość równą 8 . Pole powierzchni całkowitej tego graniastosłupa jest równe:

A. \(\frac{8^2}{3}(\frac{\sqrt{3}}{2}+3)\)

B. \(8^2\cdot \sqrt{3}\)

C. \(\frac{8^2\sqrt{6}}{3}\)

D. \(8^2(\frac{\sqrt{3}}{2}+3)\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 24 - maturalne.

Średnia arytmetyczna zestawu danych: \(2, 4, 7, 8, 9\) jest taka sama jak średnia arytmetyczna zestawu danych: \(2, 4, 7, 8, 9, x\). Wynika stąd, że

A. \(x=0\)

B. \(x=3\)

C. \(x=5\)

D. \(x=6\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 25 - maturalne.

W każdym z trzech pojemników znajduje się para kul, z których jedna jest czerwona, a druga – niebieska. Z każdego pojemnika losujemy jedną kulę. Niech \(p\) oznacza prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie dwie z trzech wylosowanych kul będą czerwone. Wtedy:

A. \(p=\frac{1}{4}\)

B. \(p=\frac{3}{8}\)

C. \(p=\frac{1}{2}\)

D. \(p=\frac{2}{3}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 26 - maturalne.

Rozwiąż nierówność \(2x^2-4x>(x+3)(x-2)\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 27 - maturalne.

Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y prawdziwa jest nierówność 4x^2-8xy+5y^2\geq 0

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 28 - maturalne.

Dany jest kwadrat \(ABCD\). Przekątne \(AC\) i \(BD\) przecinają się w punkcie \(E\). Punkty \(K\) i \(M\) są środkami odcinków – odpowiednio – \(AE\) i \(EC\). Punkty \(L\) i \(N\) leżą na przekątnej \(BD\) tak, że \(|BL|=\frac{1}{3}|BE|\) i \(|DN|=\frac{1}{3}|DE|\) (zobacz rysunek). Wykaż, że stosunek pola czworokąta \(KLMN\) do pola kwadratu \(ABCD\) jest równy 1:3.

Zadanie maturalne 28 2015

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 29 - maturalne.

Oblicz najmniejszą i największą wartość funkcji kwadratowej \(f(x) = x^2-6x+3\) w przedziale \([0,4]\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 30 - maturalne.

W układzie współrzędnych są dane punkty \(A=(-43,-12)\), \(B=(50,19)\). Prosta AB przecina oś \(Ox\) w punkcie \(P\). Oblicz pierwszą współrzędną punktu \(P\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 31 - maturalne.

Jeżeli do licznika i do mianownika nieskracalnego dodatniego ułamka dodamy połowę jego licznika, to otrzymamy \(\frac{4}{7}\), a jeżeli do licznika i do mianownika dodamy \(1\), to otrzymamy \(\frac{1}{2}\). Wyznacz ten ułamek.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 32 - maturalne.

Wysokość graniastosłupa prawidłowego czworokątnego jest równa 16. Przekątna graniastosłupa jest nachylona do płaszczyzny jego podstawy, pod kątem którego cosinus jest równy 3/5. Oblicz pole powierzchni całkowitej tego graniastosłupa.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 33 - maturalne.

Wśród 115 osób przeprowadzono badania ankietowe, związane z zakupami w pewnym kiosku. W poniższej tabeli przedstawiono informacje o tym, ile osób kupiło bilety tramwajowe ulgowe oraz ile osób kupiło bilety tramwajowe normalne.

Rodzaj kupionych biletówLiczba osób
ulgowe76
normalne41

Uwaga! 27 osób spośród ankietowanych kupiło oba rodzaje biletów.

Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że osoba losowo wybrana spośród ankietowanych nie kupiła żadnego biletu. Wynik przedstaw w formie nieskracalnego ułamka.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 34 - maturalne.

W nieskończonym ciągu arytmetycznym \((a_n)\), określonym dla \(n\geq 1\), suma jedenastu początkowych wyrazów tego ciągu jest równa 187. Średnia arytmetyczna pierwszego, trzeciego i dziewiątego wyrazu tego ciągu, jest równa 12. Wyrazy \(a_1, a_3, a_k\) ciągu \((a_n)\), w podanej kolejności, tworzą nowy ciąg — trzywyrazowy ciąg geometryczny \((b_n)\). Oblicz \(k\).

Pokaż rozwiązanie zadania.





Liczba odnalezionych zadań w zbiorze: 34.

Oznaczenia

zadanie maturalne Zadania maturalne — poziom podstawowy. zadanie maturalne Zadania maturalne — poziom rozszerzony.

Zbiór zadań z matematyki
Zbiór wszystkich zadań z matematyki wraz z pełnymi rozwiązaniami.
AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.
arkusze maturalne CKE z matematyki
ARKUSZE CKE

Źródło: Centralna Komisja Egzaminacyjna

 



Udostępnij
©® Media Nauka 2008-2025 r.