Zadania — matura 2015, matematyka, poziom podstawowy
Zadania maturalne z roku 2015 z matematyki - poziom podstawowy. Są to zadania z arkuszy egzaminacyjnych wraz z rozwiązaniami.
Zadanie nr 1 - maturalne.
Tangens kąta \(\alpha\) zaznaczonego na rysunku jest równy:
A. \(-\frac{\sqrt{3}}{3}\)
B. \(-\frac{4}{5}\)
C. \(-1\)
D. \(-\frac{5}{4}\)
Zadanie nr 2 - maturalne.
Wskaż rysunek, na którym przedstawiono przedział, będący zbiorem wszystkich rozwiązań nierówności \(-4\leq x-1\leq 4\).
Zadanie nr 3 - maturalne.
Dane są liczby \(a=-\frac{1}{27},\ b=\log_{\frac{1}{4}}{64},\ c=\log_{\frac{1}{3}}{27}\). Iloczyn \(abc\) jest równy:
A. \(-9\)
B. \(-\frac{1}{3}\)
C. \(\frac{1}{3}\)
D. \(3\)
Zadanie nr 4 - maturalne.
Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 4% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19%. Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:
A. \(1000\cdot (1-\frac{81}{100}\cdot \frac{4}{100})\)
B. \(1000\cdot (1+\frac{19}{100}\cdot \frac{4}{100})\)
C. \(1000\cdot (1+\frac{81}{100}\cdot \frac{4}{100})\)
D. \(1000\cdot (1-\frac{19}{100}\cdot \frac{4}{100})\)
Zadanie nr 5 - maturalne.
Równość \(\frac{m}{5-\sqrt{5}}=\frac{5+\sqrt{5}}{5}\) zachodzi dla:
A. \(m=5\)
B. \(m=4\)
C. \(m=1\)
D. \(m=-5\)
Zadanie nr 6 - maturalne.
Układ równań
\(\begin{cases}x-y=3\\ 2x+0,5y=4 \end{cases}\)
opisuje w układzie współrzędnych na płaszczyźnie:
A. zbiór pusty.
B. dokładnie jeden punkt.
C. dokładnie dwa różne punkty.
D. zbiór nieskończony.
Zadanie nr 7 - maturalne.
Suma wszystkich pierwiastków równania \((x+3)(x+7)(x-11)=0\) jest równa:
A. \(-1\)
B. \(21\)
C. \(1\)
D. \(-21\)
Zadanie nr 8 - maturalne.
Równanie \(\frac{x-1}{x+1}=x-1\):
A. ma dokładnie jedno rozwiązanie: \(x=1\).
B. ma dokładnie jedno rozwiązanie: \(x=0\).
C. ma dokładnie jedno rozwiązanie: \(x=-1\).
D. ma dokładnie dwa rozwiązania: \(x=0, x=1\).
Zadanie nr 9 - maturalne.
Na rysunku przedstawiono wykres funkcji \(f\).
Zbiorem wartości funkcji \(f\) jest
A. \((-2,2)\)
B. \([-2,2)\)
C. \([-2,2]\)
D. \((-2,2]\)
Zadanie nr 10 - maturalne.
Na wykresie funkcji liniowej określonej wzorem \(f(x)=(m-1)x+3\) leży punkt \(S=(5,-2)\). Zatem:
A. \(m=-1\)
B. \(m=0\)
C. \(m=1\)
D. \(m=2\)
Zadanie nr 11 - maturalne.
Funkcja liniowa f określona wzorem \(f(x)=2x+b\) ma takie samo miejsce zerowe, jakie ma funkcja liniowa \(g(x)=-3x+4\). Stąd wynika, że
A. \(b=4\)
B. \(b=-\frac{3}{2}\)
C. \(b=-\frac{8}{3}\)
D. \(b=\frac{4}{3}\)
Zadanie nr 12 - maturalne.
Funkcja kwadratowa określona jest wzorem \(f(x)=x^2+x+c\). Jeżeli \(f(3)=4\), to:
A. \(f(1)=-6\)
B. \(f(1)=0\)
C. \(f(1)=6\)
D. \(f(1)=18\)
Zadanie nr 13 - maturalne.
Ile liczb całkowitych x spełnia nierówność \(\frac{2}{7}<\frac{x}{14}<\frac{4}{3}\) ?
A. 14
B. 15
C. 16
D. 17
Zadanie nr 14 - maturalne.
W rosnącym ciągu geometrycznym \((a_n)\) , określonym dla \(n\geq 1\), spełniony jest warunek \(a_4=3a_1\). Iloraz \(q\) tego ciągu jest równy:
A. \(q=\frac{1}{3}\)
B. \(q=\frac{1}{\sqrt[3]{3}}\)
C. \(q=\sqrt[3]{3}\)
D. \(q=3\)
Zadanie nr 15 - maturalne.
Jeżeli \(0°<\alpha <90°\) oraz \(tg\alpha=2\sin{\alpha}\), to:
A. \(\cos{\alpha}=\frac{1}{2}\)
B. \(\cos{\alpha}=\frac{\sqrt{2}}{2}\)
C. \(\cos{\alpha}=\frac{\sqrt{3}}{2}\)
D. \(\cos{\alpha}=1\)
Zadanie nr 16 - maturalne.
Miara kąta wpisanego w okrąg jest o \(20°\) mniejsza od miary kąta środkowego opartego na tym samym łuku. Wynika stąd, że miara kąta wpisanego jest równa:
A. \(5°\)
B. \(10°\)
C. \(20°\)
D. \(30°\)
Zadanie nr 17 - maturalne.
Pole rombu o obwodzie 8 jest równe 1. Kąt ostry tego rombu ma miarę \(\alpha\). Wtedy:
A. \(14°<\alpha< 15°\)
B. \(29°<\alpha< 30°\)
C. \(60°<\alpha< 61°\)
D. \(75°<\alpha< 76°\)
Zadanie nr 18 - maturalne.
Prosta l o równaniu \(y=m^2x+3\) jest równoległa do prostej k o równaniu \(y=(4m-4)x-3\). Zatem:
A. \(m=2\)
B. \(m=-2\)
C. \(m=-2-2\sqrt{2}\)
D. \(m=-2+2\sqrt{2}\)
Zadanie nr 19 - maturalne.
Proste o równaniach: \(y=2mx-m^2-1\) oraz \(y=4m^2x+m^2+1\) są prostopadłe dla:
A. \(m=-\frac{1}{2}\)
B. \(m=\frac{1}{2}\)
C. \(m=1\)
D. \(m=2\)
Zadanie nr 20 - maturalne.
Dane są punkty \(M = (-2,1), N = (-1,3)\). Punkt \(K \)jest środkiem odcinka \(MN\). Obrazem punktu \(K\) w symetrii względem początku układu współrzędnych jest punkt:
A. \(K'=(2,-\frac{3}{2})\)
B. \(K'=(2,\frac{3}{2})\)
C. \(K'=(\frac{3}{2},2)\)
D. \(K'=(\frac{3}{2},-2)\)
Zadanie nr 21 - maturalne.
W graniastosłupie prawidłowym czworokątnym \(EFGHIJKL\) wierzchołki \(E, G, L\) połączono odcinkami (tak jak na rysunku).
Wskaż kąt między wysokością \(OL\) trójkąta \(EGL\) i płaszczyzną podstawy tego graniastosłupa.
A. \(\angle HOL\)
B. \(\angle OGL\)
C. \(\angle HLO\)
D. \(\angle OHL\)
Zadanie nr 22 - maturalne.
Przekrojem osiowym stożka jest trójkąt równoboczny o boku długości 6 . Objętość tego stożka jest równa:
A. \(27\pi \sqrt{3}\)
B. \(9\pi \sqrt{3}\)
C. \(18\pi\)
D. \(6\pi\)
Zadanie nr 23 - maturalne.
Każda krawędź graniastosłupa prawidłowego trójkątnego ma długość równą 8 . Pole powierzchni całkowitej tego graniastosłupa jest równe:
A. \(\frac{8^2}{3}(\frac{\sqrt{3}}{2}+3)\)
B. \(8^2\cdot \sqrt{3}\)
C. \(\frac{8^2\sqrt{6}}{3}\)
D. \(8^2(\frac{\sqrt{3}}{2}+3)\)
Zadanie nr 24 - maturalne.
Średnia arytmetyczna zestawu danych: \(2, 4, 7, 8, 9\) jest taka sama jak średnia arytmetyczna zestawu danych: \(2, 4, 7, 8, 9, x\). Wynika stąd, że
A. \(x=0\)
B. \(x=3\)
C. \(x=5\)
D. \(x=6\)
Zadanie nr 25 - maturalne.
W każdym z trzech pojemników znajduje się para kul, z których jedna jest czerwona, a druga – niebieska. Z każdego pojemnika losujemy jedną kulę. Niech \(p\) oznacza prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie dwie z trzech wylosowanych kul będą czerwone. Wtedy:
A. \(p=\frac{1}{4}\)
B. \(p=\frac{3}{8}\)
C. \(p=\frac{1}{2}\)
D. \(p=\frac{2}{3}\)
Zadanie nr 27 - maturalne.
Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y prawdziwa jest nierówność
Zadanie nr 28 - maturalne.
Dany jest kwadrat \(ABCD\). Przekątne \(AC\) i \(BD\) przecinają się w punkcie \(E\). Punkty \(K\) i \(M\) są środkami odcinków – odpowiednio – \(AE\) i \(EC\). Punkty \(L\) i \(N\) leżą na przekątnej \(BD\) tak, że \(|BL|=\frac{1}{3}|BE|\) i \(|DN|=\frac{1}{3}|DE|\) (zobacz rysunek). Wykaż, że stosunek pola czworokąta \(KLMN\) do pola kwadratu \(ABCD\) jest równy 1:3.
Zadanie nr 29 - maturalne.
Oblicz najmniejszą i największą wartość funkcji kwadratowej \(f(x) = x^2-6x+3\) w przedziale \([0,4]\).
Zadanie nr 30 - maturalne.
W układzie współrzędnych są dane punkty \(A=(-43,-12)\), \(B=(50,19)\). Prosta AB przecina oś \(Ox\) w punkcie \(P\). Oblicz pierwszą współrzędną punktu \(P\).
Zadanie nr 31 - maturalne.
Jeżeli do licznika i do mianownika nieskracalnego dodatniego ułamka dodamy połowę jego licznika, to otrzymamy \(\frac{4}{7}\), a jeżeli do licznika i do mianownika dodamy \(1\), to otrzymamy \(\frac{1}{2}\). Wyznacz ten ułamek.
Zadanie nr 32 - maturalne.
Wysokość graniastosłupa prawidłowego czworokątnego jest równa 16. Przekątna graniastosłupa jest nachylona do płaszczyzny jego podstawy, pod kątem którego cosinus jest równy 3/5. Oblicz pole powierzchni całkowitej tego graniastosłupa.
Zadanie nr 33 - maturalne.
Wśród 115 osób przeprowadzono badania ankietowe, związane z zakupami w pewnym kiosku. W poniższej tabeli przedstawiono informacje o tym, ile osób kupiło bilety tramwajowe ulgowe oraz ile osób kupiło bilety tramwajowe normalne.
Rodzaj kupionych biletów | Liczba osób |
ulgowe | 76 |
normalne | 41 |
Uwaga! 27 osób spośród ankietowanych kupiło oba rodzaje biletów.
Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że osoba losowo wybrana spośród ankietowanych nie kupiła żadnego biletu. Wynik przedstaw w formie nieskracalnego ułamka.
Zadanie nr 34 - maturalne.
W nieskończonym ciągu arytmetycznym \((a_n)\), określonym dla \(n\geq 1\), suma jedenastu początkowych wyrazów tego ciągu jest równa 187. Średnia arytmetyczna pierwszego, trzeciego i dziewiątego wyrazu tego ciągu, jest równa 12. Wyrazy \(a_1, a_3, a_k\) ciągu \((a_n)\), w podanej kolejności, tworzą nowy ciąg — trzywyrazowy ciąg geometryczny \((b_n)\). Oblicz \(k\).
Liczba odnalezionych zadań w zbiorze: 34.
Oznaczenia
Zadania maturalne — poziom podstawowy. Zadania maturalne — poziom rozszerzony.Źródło: Centralna Komisja Egzaminacyjna