Zadania — matura 2016, matematyka, poziom rozszerzony

Zadania maturalne z roku 2016 z matematyki - poziom rozszerzony. Są to zadania z arkuszy egzaminacyjnych wraz z rozwiązaniami.


zadanie maturalne

Zadanie nr 1 - maturalne.

W rozwinięciu wyrażenia \((2\sqrt{3}x+4y)^3\) współczynnik przy iloczynie \(xy^2\) jest równy

A. \(32\sqrt{3}\)

B. \(48\)

C. \(96\sqrt{3}\)

D. \(144\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 2 - maturalne.

Wielomian \(W(x)=6x^3+3x^2-5x+p\) jest podzielny przez dwumian \(x-1\) dla \(p\) równego:

A. \(4\)

B. \(-2\)

C. \(2\)

D. \(-4\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 3 - maturalne.

Na rysunku przedstawiono fragment wykresu funkcji homograficznej f(x), której dziedziną jest zbiór \(D=(-\infty,3)\cup (3,+\infty)\).

ilustracja do zadania maturalnego 3

Równanie \(|f(x)|=p\) z niewiadomą \(x\) ma dokładnie jedno rozwiązanie

A. w dwóch przypadkach: \(p=0\) lub \(p=3\).

B. w dwóch przypadkach: \(p=0\) lub \(p=2\).

C. tylko wtedy, gdy \(p=3\).

D. tylko wtedy, gdy \(p=2\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 4 - maturalne.

Funkcja \(f(x)=\frac{3x-1}{x^2+4}\) jest określona dla każdej liczby rzeczywistej \(x\). Pochodna tej funkcji jest określona wzorem:

A. \(f'(x)=\frac{-3x^2+2x+12}{(x^2+4)^2}\)

B. \(f'(x)=\frac{-9x^2+2x-12}{(x^2+4)^2}\)

C. \(f'(x)=\frac{3x^2-2x-12}{(x^2+4)^2}\)

D. \(f'(x)=\frac{9x^2-2x+12}{(x^2+4)^2}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 5 - maturalne.

Rozwiąż nierówność \(\frac{2cos{x}-\sqrt{3}}{cos^2x}<0\) w przedziale \(\langle 0;2\pi\rangle\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 6 - maturalne.

Granica \(\displaystyle\lim_{n\to \infty}{\frac{(pn^2+4n)^3}{5n^6-4}}=-\frac{8}{5}\). Wynika stąd, że

A. \(p=-8\)

B. \(p=4\)

C. \(p=2\)

D. \(p=-2\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 7 - maturalne.

Wśród 10 tysięcy mieszkańców pewnego miasta przeprowadzono sondaż dotyczący budowy przedszkola publicznego. Wyniki sondażu przedstawiono w tabeli.

Badane grupyLiczba osób popierających budowę przedszkolaLiczba osób niepopierających budowy przedszkola
Kobiety51401860
Mężczyźni2260740

Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że losowo wybrana osoba, spośród ankietowanych, popiera budowę przedszkola, jeśli wiadomo, że jest mężczyzną. Zakoduj trzy pierwsze cyfry po przecinku nieskończonego rozwinięcia dziesiętnego otrzymanego wyniku.

      

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 8 - maturalne.

Dany jest ciąg geometryczny \((a_n)\) określony wzorem \(a_n=(\frac{1}{2x-371})^n\), dla \(n\geq 1\). Wszystkie wyrazy tego ciągu są dodatnie. Wyznacz najmniejszą liczbę całkowitą \(x\), dla której nieskończony szereg \(a_1+a_2+a_3+...\) jest zbieżny.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 9 - maturalne.

Wykaż, że dla dowolnych dodatnich liczb rzeczywistych \(x\) i \(y\) takich, że \(x^2+y^2=2\), prawdziwa jest nierówność \(x+y\leq 2\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 10 - maturalne.

Dany jest prostokąt \(ABCD\). Okrąg wpisany w trójkąt \(BCD\) jest styczny do przekątnej \(BD\) w punkcie \(N\). Okrąg wpisany w trójkąt \(ABD\) jest styczny do boku \(AD\) w punkcie \(M\), a środek \(S\) tego okręgu leży na odcinku \(MN\), jak na rysunku.

Ilustracja do zadania 9 z oznaczeniami

Wykaż, że \(|MN|=|AD|\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 11 - maturalne.

Wyznacz wszystkie wartości parametru \(a\), dla których wykresy funkcji \(f\) i \(g\), określonych wzorami \(f(x)=x-2\) oraz \(g(x)=5-ax\), przecinają się w punkcie o obu współrzędnych dodatnich.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 12 - maturalne.

Dany jest trójmian kwadratowy \(f(x)=x^2+2(m+1)x+6m+1\). Wyznacz wszystkie rzeczywiste wartości parametru m, dla których ten trójmian ma dwa różne pierwiastki \(x_1\), \(x_2\) tego samego znaku, spełniające warunek \(|x_1-x_2|<3\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 13 - maturalne.

Punkty \(A=(30,32)\) i \(B=(0,8)\) są sąsiednimi wierzchołkami czworokąta \(ABCD \) wpisanego w okrąg. Prosta o równaniu \(x-y+2=0\) jest jedyną osią symetrii tego czworokąta i zawiera przekątną \(AC\). Oblicz współrzędne wierzchołków \(C\) i \(D\) tego czworokąta.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 14 - maturalne.

Rozpatrujemy wszystkie liczby naturalne dziesięciocyfrowe, w zapisie których mogą występować wyłącznie cyfry 1, 2, 3, przy czym cyfra 1 występuje dokładnie trzy razy. Uzasadnij, że takich liczb jest 15 360.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 15 - maturalne.

W ostrosłupie prawidłowym czworokątnym \(ABCDS\) o podstawie \(ABCD\) wysokość jest równa 5, a kąt między sąsiednimi ścianami bocznymi ostrosłupa ma miarę 120°. Oblicz objętość tego ostrosłupa.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 16 - maturalne.

Parabola o równaniu \(y=2-\frac{1}{2}x^2\) przecina oś \(Ox\) układu współrzędnych w punktach \(A=(- 2,0)\) i \(B=(2,0)\). Rozpatrujemy wszystkie trapezy równoramienne \(ABCD\), których dłuższą podstawą jest odcinek \(AB\), a końce \(C\) i \(D\) krótszej podstawy leżą na paraboli (zobacz rysunek).

Zadanie 16, ilustracja, matura 2016

Wyznacz pole trapezu \(ABCD\) w zależności od pierwszej współrzędnej wierzchołka \(C\). Oblicz współrzędne wierzchołka \(C\) tego z rozpatrywanych trapezów, którego pole jest największe.

Pokaż rozwiązanie zadania.





Liczba odnalezionych zadań w zbiorze: 16.

Oznaczenia

zadanie maturalne Zadania maturalne — poziom podstawowy. zadanie maturalne Zadania maturalne — poziom rozszerzony.

Zbiór zadań z matematyki
Zbiór wszystkich zadań z matematyki wraz z pełnymi rozwiązaniami.
AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.
arkusze maturalne CKE z matematyki
ARKUSZE CKE

Źródło: Centralna Komisja Egzaminacyjna

 



Udostępnij
©® Media Nauka 2008-2023 r.