Zadania — matura 2020, matematyka, poziom podstawowy
Zadania maturalne z roku 2020 z matematyki - poziom podstawowy. Są to zadania z arkuszy egzaminacyjnych wraz z rozwiązaniami.
Zadanie nr 1 - maturalne.
Wartość wyrażenia \(x^2−6x+9\) dla \(x=\sqrt{3}+3\) jest równa
A. \(1\)
B. \(3\)
C. \(1+2\sqrt{3}\)
D. \(1-2\sqrt{3}\)
Zadanie nr 2 - maturalne.
Funkcja kwadratowa \(f\) jest określona wzorem \(f(x)=a(x−1)(x−3)\). Na rysunku przedstawiono fragment paraboli będącej wykresem tej funkcji. Wierzchołkiem tej paraboli jest punkt \(W=(2,1)\).
Współczynnik a we wzorze funkcji \(f\) jest równy
A. \(1\)
B. \(2\)
C. \(-2\)
D. \(-1\)
Największa wartość funkcji \(f\) w przedziale \(\langle 1, 4\rangle \) jest równa
A. \(-3\)
B. \(0\)
C. \(1\)
D. \(2\)
Osią symetrii paraboli będącej wykresem funkcji \(f\) jest prosta o równaniu
A. \(x=1\)
B. \(x=2\)
C. \(y=1\)
D. \(y=2\)
Zadanie nr 3 - maturalne.
Liczba \(\frac{2^{50}\cdot 3^{40}}{36^{10}}\) jest równa:
A. \(6^{70}\)
B. \(6^{45}\)
C. \(2^{30}\cdot 3^{20}\)
D. \(2^{10}\cdot 3^{20}\)
Zadanie nr 4 - maturalne.
Ciąg \((a_n)\) jest określony wzorem \(a_n=2n^2\) dla \(n\geq 1\). Różnica \(a_5-a_4\) jest równa
A. \(4\)
B. \(20\)
C. \(36\)
D. \(18\)
Zadanie nr 5 - maturalne.
Punkty \(A, B, C, D\) leżą na okręgu o środku w punkcie \(O\). Kąt środkowy \(DOC\) ma miarę 118° (zobacz rysunek).
Miara kąta ABC jest równa
A. 59°
B. 48°
C. 62°
D. 31°
Zadanie nr 6 - maturalne.
W ciągu arytmetycznym \((a_n)\), określonym dla \(n\geq 1\), czwarty wyraz jest równy 3, a różnica tego ciągu jest równa 5. Suma \(a_1+a_2+a_3+a_4\) jest równa
A. \(-42\)
B. \(-36\)
C. \(-18\)
D. \(6\)
Zadanie nr 7 - maturalne.
Cenę x pewnego towaru obniżono o 20% i otrzymano cenę y. Aby przywrócić cenę x, nową cenę y należy podnieść o
A. 25%
B. 20%
C. 15%
D. 12%
Zadanie nr 8 - maturalne.
Liczba \(\log_{5}{\sqrt{125}}\) jest równa:
A. \(\frac{2}{3}\)
B. \(2\)
C. \(3\)
D. \(\frac{3}{2}\)
Zadanie nr 9 - maturalne.
Zbiorem wszystkich rozwiązań nierówności \(3(1−x)>2(3x−1)−12x\) jest przedział
A. \((-\frac{5}{3},+\infty)\)
B. \((-\infty,\frac{5}{3})\)
C. \((\frac{5}{3},+\infty)\)
D. \((-\infty,-\frac{5}{3})\)
Zadanie nr 10 - maturalne.
Suma wszystkich rozwiązań równania \(x(x−3)(x+2)=0\) jest równa
A. 0
B. 1
C. 2
D. 3
Zadanie nr 11 - maturalne.
Równanie \(x(x−2)=(x−2)^2\) w zbiorze liczb rzeczywistych
A. nie ma rozwiązań.
B. ma dokładnie jedno rozwiązanie: \(x=2\).
C. ma dokładnie jedno rozwiązanie: \(x=0\).
D. ma dwa różne rozwiązania: \(x=1\) i \(x=2\).
Zadanie nr 12 - maturalne.
Na rysunku przedstawiono fragment wykresu funkcji liniowej \(f\) określonej wzorem \(f(x)=ax+b\).
A. \(a+b>0\)
B. \(a+b=0\)
C. \(a\cdot b>0\)
D. \(a\cdot b<0\)
Zadanie nr 13 - maturalne.
Funkcja \(f\) jest określona wzorem \(f(x)=4^{-x}+1\) dla każdej liczby rzeczywistej \(x\). Liczba \(f(\frac{1}{2})\) jest równa.
A. \(\frac{1}{2}\)
B. \(\frac{3}{2}\)
C. \(3\)
D. \(17\)
Zadanie nr 14 - maturalne.
Proste o równaniach \(y=(m−2)x\) oraz \(y=\frac{3}{4}x+7\) są równoległe. Wtedy
A. \(m=-\frac{5}{4}\)
B. \(m=\frac{2}{3}\)
C. \(m=\frac{11}{4}\)
D. \(m=\frac{10}{3}\)
Zadanie nr 15 - maturalne.
Punkt \(A=(\frac{1}{3},-1)\) należy do wykresu funkcji liniowej \(f\) określonej wzorem \(f(x)=3x+b\). Wynika stąd, że
A. \(b=2\)
B. \(b=1\)
C. \(b=-1\)
D. \(b=-2\)
Zadanie nr 16 - maturalne.
Prosta przechodząca przez punkty \(A=(3,−2)\) i \(B=(−1,6)\) jest określona równaniem
A. \(y=-2x+4\)
B. \(y=-2x-8\)
C. \(y=2x+8\)
D. \(y=2x-4\)
Zadanie nr 17 - maturalne.
Dany jest trójkąt prostokątny o kątach ostrych \(\alpha\) i \(\beta\) (zobacz rysunek).
Wyrażenie \(2\cos{\alpha}−\sin{\beta}\) jest równe
A. \(2\sin{\beta}\)
B. \(\cos{\alpha}\)
C. \(0\)
D. \(2\)
Zadanie nr 18 - maturalne.
Punkt B jest obrazem punktu \(A=(−3,5)\) w symetrii względem początku układu współrzędnych. Długość odcinka \(AB\) jest równa
A. \(2\sqrt{34}\)
B. \(8\)
C. \(\sqrt{34}\)
D. \(12\)
Zadanie nr 19 - maturalne.
Ile jest wszystkich dwucyfrowych liczb naturalnych utworzonych z cyfr: 1, 3, 5, 7, 9, w których cyfry się nie powtarzają?
A. 10
B. 15
C. 20
D. 25
Zadanie nr 20 - maturalne.
Pole prostokąta ABCD jest równe 90. Na bokach \(AB\) i \(CD\) wybrano — odpowiednio — punkty \(P\) i \(R\), takie, że \(\frac{|AP|}{|PB|}=\frac{|CR|}{|RD|}=\frac{3}{2}\) (zobacz rysunek).
Pole czworokąta \(APCR\) jest równe
A. 36
B. 40
C. 54
D. 60
Zadanie nr 21 - maturalne.
Cztery liczby: \(2, 3, a, 8\), tworzące zestaw danych, są uporządkowane rosnąco. Mediana tego zestawu czterech danych jest równa medianie zestawu pięciu danych: \(5, 3, 6, 8, 2\). Zatem
A. \(a=7\)
B. \(a=6\)
C. \(a=5\)
D. \(a=4\)
Zadanie nr 22 - maturalne.
Przekątna sześcianu ma długość \(4\sqrt{3}\). Pole powierzchni tego sześcianu jest równe
A. 96
B. \(24\sqrt{3}\)
C. 192
D. \(16\sqrt{3}\)
Zadanie nr 23 - maturalne.
Dwa stożki o takich samych podstawach połączono podstawami w taki sposób jak na rysunku. Stosunek wysokości tych stożków jest równy 3:2 . Objętość stożka o krótszej wysokości jest równa 12 cm3 .
Objętość bryły utworzonej z połączonych stożków jest równa
A. 20 cm3
B. 30 cm3
C. 39 cm3
D. 52,5 cm3
Zadanie nr 26 - maturalne.
Wykaż, że dla każdych dwóch różnych liczb rzeczywistych \(a\) i \(b\) prawdziwa jest nierówność \(a(a− 2b)+2b^2>0\).
Zadanie nr 27 - maturalne.
Trójkąt \(ABC\) jest równoboczny. Punkt \(E\) leży na wysokości \(CD\) tego trójkąta oraz \(|CE|=\frac{3}{4}|CD|\). Punkt \(F\) leży na boku \(BC\) i odcinek \(EF\) jest prostopadły do \(BC\) (zobacz rysunek).
Wykaż, że \(|CF|=\frac{9}{16}|CB|\).
Zadanie nr 28 - maturalne.
Rzucamy dwa razy symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego oczka do sześciu oczek. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że co najmniej jeden raz wypadnie ścianka z pięcioma oczkami.
Zadanie nr 29 - maturalne.
Kąt \(\alpha\) jest ostry i spełnia warunek \(\frac{2\sin{\alpha}+3\cos{\alpha}}{\cos{\alpha}}=4\). Oblicz tangens kąta \(\alpha\).
Zadanie nr 30 - maturalne.
Dany jest kwadrat \(ABCD\), w którym \(A=(5, -\frac{5}{3})\). Przekątna \(BD\) tego kwadratu jest zawarta w prostej o równaniu \(y =\frac{4}{3}x\). Oblicz współrzędne punktu przecięcia przekątnych \(AC\) i \(BD\) oraz pole kwadratu \(ABCD\).
Zadanie nr 31 - maturalne.
Wszystkie wyrazy ciągu geometrycznego \((a_n)\), określonego dla \(n\geq 1\), są dodatnie. Wyrazy tego ciągu spełniają warunek \(6a_1-5a_2+a_3= 0\). Oblicz iloraz \(q\) tego ciągu należący do przedziału \(\langle 2\sqrt{2}, 3\sqrt{2}\rangle\).
Zadanie nr 32 - maturalne.
Dany jest ostrosłup prawidłowy czworokątny \(ABCDS\), którego krawędź boczna ma długość 6 (zobacz rysunek). Ściana boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy, pod kątem którego tangens jest równy \(\sqrt{7}\). Oblicz objętość tego ostrosłupa.
Liczba odnalezionych zadań w zbiorze: 32.
Oznaczenia
Zadania maturalne — poziom podstawowy. Zadania maturalne — poziom rozszerzony.Źródło: Centralna Komisja Egzaminacyjna