Zadania — matura 2023, matematyka, poziom podstawowy

Zadania maturalne z roku 2023 z matematyki - poziom podstawowy. Są to zadania z arkuszy egzaminacyjnych wraz z rozwiązaniami.


zadanie maturalne

Zadanie nr 1 - maturalne.

Ciąg \((a_n)\) jest określony wzorem \(a_n=2^n\cdot (n+1)\) dla każdej liczby naturalnej \(n\geq 1\). Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Wyraz \(a_4\) jest równy

A. 64

B. 40

C. 48

D. 80

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 2 - maturalne.

Trzywyrazowy ciąg \((27,9,a-1)\) jest geometryczny. Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.
Liczba \(a\) jest równa

A. 3

B. 0

C. 4

D. 2

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 3 - maturalne.

Jednym z miejsc zerowych funkcji kwadratowej \(f\) jest liczba \((−5)\). Pierwsza współrzędna wierzchołka paraboli, będącej wykresem funkcji \(f\), jest równa \(3\). Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Drugim miejscem zerowym funkcji \(f\) jest liczba

A. 11

B. 1

C. (-1)

D. (-13)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 4 - maturalne.

W kartezjańskim układzie współrzędnych \(x,y\) zaznaczono kąt \(\alpha\) o wierzchołku w punkcie \(O=(0,0)\). Jedno z ramion tego kąta pokrywa się z dodatnią półosią \(0x\), a drugie przechodzi przez punkt \(P=(-3,1)\) (zobacz rysunek).

Zadanie 18, matura 2023

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Tangens kąta \(\alpha\) jest równy

A. \(\frac{1}{\sqrt{10}}\)

B. \((-\frac{3}{\sqrt{10}})\)

C. \((-\frac{3}{1})\)

D. \((-\frac{1}{3})\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 5 - maturalne.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Dla każdego kąta ostrego \(\alpha\) wyrażenie \(\sin^4{\alpha}+\sin^2{\alpha}\cdot \cos^2{\alpha}\) jest równe:

A. \(\sin^2{\alpha}\)

B. \(\sin^6{\alpha}\cdot \cos^2{\alpha}\)

C. \(\sin^4{\alpha}+1\)

D. \(\sin^2{\alpha}\cdot (\sin{\alpha}+\cos{\alpha})\cdot (\sin{\alpha}-\cos{\alpha})\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 6 - maturalne.

W rombie o boku długości \(6\sqrt{2}\) kąt rozwarty ma miarę 150°. Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Iloczyn długości przekątnych tego rombu jest równy

A. 24

B. 72

C. 36

D. \(36\sqrt{2}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 7 - maturalne.

Punkty \(A, B, C\) leżą na okręgu o środku w punkcie \(O\). Kąt \(ACO\) ma miarę 70° (zobacz rysunek). Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Miara kąta ostrego \(ABC\) jest równa:

Zadanie 21, matura 2023, matematyka

A. \(10°\)

B. \(20°\)

C. \(35°\)

D. \(40°\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 8 - maturalne.

Ze zbioru ośmiu liczb {2,3,4,5,6,7,8,9} losujemy ze zwracaniem kolejno dwa razy po jednej liczbie. Oblicz prawdopodobieństwo zdarzenia \(A\) polegającego na tym, że iloczyn wylosowanych liczb jest podzielny przez \(15\). Zapisz obliczenia.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 9 - maturalne.

Właściciel pewnej apteki przeanalizował dane dotyczące liczby obsługiwanych klientów z 30 kolejnych dni. Przyjmijmy, że liczbę \(L\) obsługiwanych klientów \(n\)-tego dnia opisuje funkcja \(L(n)=-n^2+22n+279\), gdzie \(n\) jest liczbą naturalną spełniającą warunki \(n\geq 1\) i \(n\leq 30\).

Oceń prawdziwość poniższych stwierdzeń. Wybierz \(P\), jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

Łączna liczba klientów obsłużonych w czasie wszystkich analizowanych dni jest równa \(L(30)\). P F
W trzecim dniu analizowanego okresu obsłużono 336 klientów. P F

Którego dnia analizowanego okresu w aptece obsłużono największą liczbę klientów? Oblicz liczbę klientów obsłużonych tego dnia. Zapisz obliczenia.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 10 - maturalne.

W pewnym ostrosłupie prawidłowym stosunek liczby \(W\) wszystkich wierzchołków do liczby \(K\) wszystkich krawędzi jest równy \(\frac{W}{K}=\frac{3}{5}\). Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Podstawą tego ostrosłupa jest

A. kwadrat.

B. pięciokąt foremny.

C. sześciokąt foremny.

D. siedmiokąt foremny.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 11 - maturalne.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Wszystkich liczb naturalnych pięciocyfrowych, w których zapisie dziesiętnym występują tylko cyfry 0, 5, 7 (np. 57 075, 55 555), jest

A. \(5^3\)

B. \(2\cdot 4^3\)

C. \(2\cdot 3^4\)

D. \(3^5\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 12 - maturalne.

Na diagramie poniżej przedstawiono ceny pomidorów w szesnastu wybranych sklepach.

Zadanie 29, matura 2023, matematyka

Uzupełnij tabelę. Wpisz w każdą pustą komórkę tabeli właściwą odpowiedź, wybraną spośród oznaczonych literami A–E.

1. Mediana ceny kilograma pomidorów w tych wybranych sklepach jest równa  
2. Średnia cena kilograma pomidorów w tych wybranych sklepach jest równa  

A. 5,80 zł

B. 5,73 zł

C. 5,85 zł

D. 6 zł

E. 5,70 zł

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 13 - maturalne.

Dany jest ostrosłup prawidłowy czworokątny. Wysokość ściany bocznej tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem 30° i ma długość równą 6 (zobacz rysunek).

Zadanie 26, matematyka, matura 2023

Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa. Zapisz obliczenia.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 14 - maturalne.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Dla każdej liczby rzeczywistej \(a\) wyrażenie \((2a-3)^2-(3a+3)^2\) jest równe

A. \(-24a\)

B. \(0\)

C. \(18\)

D. \(16a^2-24a\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 15 - maturalne.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Jednym z rozwiązań równania \(\sqrt{3}(x^2-2)(x+3)=0\) jest liczba

A. 3

B. 2

C. \(\sqrt{3}\)

D. \(\sqrt{2}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 16 - maturalne.

Dany jest prostokąt o bokach długości \(a\) i \(b\), gdzie \(a<b\). Obwód tego prostokąta jest równy 30. Jeden z boków prostokąta jest o 5 krótszy od drugiego.

Uzupełnij zdanie. Wybierz dwie właściwe odpowiedzi spośród oznaczonych literami A–F i wpisz te litery w wykropkowanych miejscach.

Zależności między długościami boków tego prostokąta zapisano w układach równań oznaczonych literami: ……… oraz ……… .

A. \(\begin{cases}2ab=30\\a-b=5\end{cases}\)

B. \(\begin{cases}2a+b=30\\a=5b\end{cases}\)

C. \(\begin{cases}2(a+b)=30\\b=a-5\end{cases}\)

D. \(\begin{cases}2a+2b=30\\b=5a\end{cases}\)

E. \(\begin{cases}2a+2b=30\\a-b=5\end{cases}\)

F. \(\begin{cases}a+b=30\\a=b+5\end{cases}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 17 - maturalne.

Pan Stanisław spłacił pożyczkę w wysokości 8910 zł w osiemnastu ratach. Każda kolejna rata była mniejsza od poprzedniej o 30 zł. Oblicz kwotę pierwszej raty. Zapisz obliczenia.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 18 - maturalne.

Na rysunku przedstawiono interpretację geometryczną w kartezjańskim układzie współrzędnych \(x,y\) jednego z niżej zapisanych układów równań \(A–D\).

matura 2023, zadanie 10

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Układem równań, którego interpretację geometryczną przedstawiono na rysunku, jest

A. \(\begin{cases} y=-x+2\\y=-2x+1\end{cases}\)

B. \(\begin{cases} y=x-2\\y=-2x-1\end{cases}\)

C. \(\begin{cases} y=x-2\\y=2x+1\end{cases}\)

D. \(\begin{cases} y=-x+2\\y=2x-1\end{cases}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 19 - maturalne.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Równanie \(\frac{(x+1)(x-1)^2}{(x-1)(x+1)^2}\) w zbiorze liczb rzeczywistych

A. nie ma rozwiązania.

B. ma dokładnie jedno rozwiązanie: -1.

C. ma dokładnie jedno rozwiązanie: 1.

D. ma dokładnie dwa rozwiązania: -1 oraz 1.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 20 - maturalne.

Rozwiąż równanie \(3x^3-2x^2-12x+8=0\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 21 - maturalne.

Funkcja liniowa \(f\) jest określona wzorem \(f(x)=ax+b\), gdzie \(a\) i \(b\) są pewnymi liczbami rzeczywistymi. Na rysunku obok przedstawiono fragment wykresu funkcji \(f\) w kartezjańskim układzie współrzędnych (x,y).

Zadanie 13, matura z matematyki 2023

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Liczba \(a\) oraz liczba \(b\) we wzorze funkcji \(f\) spełniają warunki:

A. \(a>0\) i \(b>0\)

B. \(a>0\) i \(b<0\)

C. \(a<0\) i \(b>0\)

D. \(a<0\) i \(b<0\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 22 - maturalne.

W kartezjańskim układzie współrzędnych \((x,y)\) narysowano wykres funkcji \(y=f(x)\) (zobacz rysunek).

Zadanie 12, matura z matematyki, 2023

1. Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Dziedziną funkcji \(f\) jest zbiór

A. \([−6,5]\)

B. \((−6,5)\)

C. \((−3,5]\)

D. \([−3,5]\)

2. Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Największa wartość funkcji \(f\) w przedziale \([−4,1]\) jest równa

A. \(0\)

B. \(1\)

C. \(2\)

D. \(5\)

3. Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Funkcja \(f\) jest malejąca w zbiorze

A. \([−6,−3)\)

B. \([−3,1]\)

C. \((1,2]\)

D. \([2,5]\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 23 - maturalne.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba \(\log_9{27}+\log_9{3}\) jest równa

A. 81

B. 9

C. 4

D. 2

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 24 - maturalne.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Zbiorem wszystkich rozwiązań nierówności \(-2(x+3)\leq \frac{2-x}{3}\) jest przedział

A. \((-\infty,-4]\)

B. \((-\infty,4]\)

C. \([-4,\infty)\)

D. \([4,\infty)\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 25 - maturalne.

Dany jest graniastosłup prawidłowy czworokątny, w którym krawędź podstawy ma długość 15. Przekątna graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem \(\alpha\) takim, że \(\cos{\alpha}=\frac{\sqrt{2}}{3}\). Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Długość przekątnej tego graniastosłupa jest równa

A. \(15\sqrt{2}\)

B. \(45\)

C. \(5\sqrt{2}\)

D. \(10\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 26 - maturalne.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba \(\sqrt[3]{-\frac{27}{16}}\cdot\sqrt[3]{2}\) jest równa

A. \((-\frac{3}{2})\)

B. \(\frac{3}{2}\)

C. \(\frac{2}{3}\)

D. \((-\frac{2}{3})\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 27 - maturalne.

Wykaż, że dla każdej liczby naturalnej \(n\geq 1\) liczba \((2n+1)^2-1\) jest podzielna przez \(8\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 28 - maturalne.

Trójkąty prostokątne \(T_1\) i \(T_2\) są podobne. Przyprostokątne trójkąta \(T_1\) mają długości 5 i 12. Przeciwprostokątna trójkąta \(T_2\) ma długość 26. Oblicz pole trójkąta \(T_2\). Zapisz obliczenia.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 29 - maturalne.

Na osi liczbowej zaznaczono sumę przedziałów.

Zadanie maturalne nr 1 z matematyki 2023

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.
Zbiór zaznaczony na osi jest zbiorem wszystkich rozwiązań nierówności

A. \(|x-3,5|\geq 1,5\)

B. \(|x-1,5|\geq 3,5\)

C. \(|x-3,5|\leq 1,5\)

D. \(|x-1,5|\leq 3,5\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 30 - maturalne.

W kartezjańskim układzie współrzędnych \((x,y)\) dane są proste \(k\) oraz \(l\) o równaniach

\(k: y=\frac{2}{3}x\)

\(l: y=-\frac{3}{2}x+13\)

Dokończ zdanie. Wybierz odpowiedź \(A\) albo B oraz odpowiedź 1., 2. albo 3.

Proste \(k\) oraz \(l\) są

A. prostopadłe

B. nie sąprostopadłe

i przecinają się w punkcie \(P\) o współrzędnych

1. \((−6,−4)\)

2. \((6,4)\)

3. \((−6,4)\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 31 - maturalne.

W kartezjańskim układzie współrzędnych \((x,y)\) dana jest prosta \(k\) o równaniu \(y=-\frac{1}{3}x+2\). Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Prosta o równaniu \(y=ax+b\) jest równoległa do prostej \(k\) i przechodzi przez punkt \(P=(3,5)\), gdy

A. \(a=3, b=4\)

B. \(a=-\frac{1}{3}, b=4\)

C. \(a=3, b=-4\)

D. \(a=-\frac{1}{3}, b=6\)

Pokaż rozwiązanie zadania.





Liczba odnalezionych zadań w zbiorze: 31.

Oznaczenia

zadanie maturalne Zadania maturalne — poziom podstawowy. zadanie maturalne Zadania maturalne — poziom rozszerzony.

Zbiór zadań z matematyki
Zbiór wszystkich zadań z matematyki wraz z pełnymi rozwiązaniami.
AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.
arkusze maturalne CKE z matematyki
ARKUSZE CKE

Źródło: Centralna Komisja Egzaminacyjna

 



Udostępnij
©® Media Nauka 2008-2023 r.