Zadania — planimetria

Znajdziesz tutaj zadania z planimetrii, czyli geometrii płaszczyzny. To zadania z podstawowych pojęć i własności figur. To zadania z rozwiązaniami. Są tu zadania autorskie oraz maturalne na poziomie podstawowym i rozszerzonym z kilku ostatnich lat.


Zadanie nr 1.

Ile różnych prostych wyznaczają cztery różne punkty na płaszczyźnie?

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Ile różnych prostych wyznacza n różnych punktów na płaszczyźnie, jeżeli żadne z trzech punktów nie są współliniowe?

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Sprawdzić, czy istnieją takie punkty \(A, B, C\), że

a) \(|AB|=10, |AC|=5, |BC|=5\)

b) \(|AB|=10, |AC|=4, |BC|=5\)

c) \(|AB|=10, |AC|=6, |BC|=5\)

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Jaka jest odległość między różnymi punktami \(A, B\), jeżeli \(|AC|=4, |BC|=5\)?

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Obliczyć odległość początku układu współrzędnych od okręgu o równaniu \((x-3)^2+(y-3)^2=4\).

Pokaż rozwiązanie zadania.

Zadanie nr 6.

Obliczyć odległość punktu \(A=(-3,4)\) od prostej o równaniu \(y=-2x+2\).

Pokaż rozwiązanie zadania.

Zadanie nr 7.

Obliczyć odległość punktu \(M=(1,2)\) od trójkąta wyznaczonego przez punkty \(A=(-1,0), B=(5,-1), C=(1,-3)\).

Pokaż rozwiązanie zadania.

Zadanie nr 8.

Znaleźć współrzędne punktów, których odległość od prostej \(y=3x+2\) jest równa \(\sqrt{2}\).

Pokaż rozwiązanie zadania.

Zadanie nr 9.

Dane są punkty \(A=(-3,-2), B=(2, -2)\). Obliczyć długość odcinka \(\overline{AB}\).

Pokaż rozwiązanie zadania.

Zadanie nr 10.

Dany jest punkt \(A=(1,4)\). Znaleźć taki punkt \(B\), że \(|\overline{AB}|=1\) i który leży na prostej \(x=\frac{1}{2}\).

Pokaż rozwiązanie zadania.

Zadanie nr 11.

Obliczyć pole i obwód trójkąta prostokątnego, wyznaczonego przez punkty \(A=(1,2), B=(1,3), C=(4,1)\).

Pokaż rozwiązanie zadania.

Zadanie nr 12.

Dany jest odcinek o końcach \(A=(2+\sqrt{2}, 2), \ B=(-4+\sqrt{2}, -4)\). Znaleźć współrzędne środka odcinka \(\overline{AB}\).

Pokaż rozwiązanie zadania.

Zadanie nr 13.

Znaleźć środek kwadratu wyznaczonego przez punkty \(A=(0,0), B=(1,2), C=(3,1), D=(2,-1)\).

Pokaż rozwiązanie zadania.

Zadanie nr 14.

Znaleźć równanie symetralnej odcinka \(\overline{AB}\), gdzie \(A=(1,4), \ B=(-2, 1)\).

Pokaż rozwiązanie zadania.

Zadanie nr 15.

Sprawdzić, czy punkty \(A, B, C\) są współliniowe (kolinearne), jeżeli:

a) \(|AB|=7, |BC|=5,5 ,|AC|=1,5\)

b) \(|AB|=4+2\sqrt{3}, |BC|=2+\sqrt{3} ,|AC|=3\sqrt{3}\)

Pokaż rozwiązanie zadania.

Zadanie nr 16.

Zbadać, czy z odcinków o długości 5,3 i 1 można zbudować trójkąt.

Pokaż rozwiązanie zadania.

Zadanie nr 17.

Punkty \(A, B, C\) są współliniowe i \(|AB|=7, |BC|=6\). Jaką liczbą jest \(|AC|\)?

Pokaż rozwiązanie zadania.

Zadanie nr 18.

Dane są odcinki o długościach \(|AB|=5, |BC|=8\). Jaką długość powinien mieć odcinek \(\overline{AC}\), aby można było zbudować trójkąt \(ABC\)?

Pokaż rozwiązanie zadania.

Zadanie nr 19.

Dane są punkty \(A=(\frac{\sqrt{2}}{2},2\sqrt{2}), \ B=(\frac{1}{\sqrt{2}}, 3\sqrt{2}+1)\). Obliczyć odległość \(|AB|\).

Pokaż rozwiązanie zadania.

Zadanie nr 20.

Dane są dwa punkty \(A, B\). Opisz jaką figurą jest:

\(a)AB^{\rightarrow}\backslash \overline{AB}\)

\(b)\overline{AB} \backslash AB^{\rightarrow}\)

\(c)\overline{AB} \cap AB^{\rightarrow}\)

\(d)\overline{AB} \cup AB^{\rightarrow}\)

\(e)AB^{\rightarrow} \cap BA^{\rightarrow}\)

\(f)AB^{\rightarrow} \cup BA^{\rightarrow}\)

Pokaż rozwiązanie zadania.

Zadanie nr 21.

Oblicz odległość punktu \(P=(3,2)\) od prostej \(3x+4y-1=0\).

Pokaż rozwiązanie zadania.

Zadanie nr 22.

Oblicz odległość punktu \(P=(-1,1)\) od prostej \(y=2x-1\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 23 - maturalne.

ilustracja do zadania 13 , matura 2016W okręgu o środku w punkcie \(S\) poprowadzono cięciwę \(AB\), która utworzyła z promieniem \(AS\) kąt o mierze 31° (zobacz rysunek). Promień tego okręgu ma długość 10. Odległość punktu \(S\) od cięciwy \(AB\) jest liczbą z przedziału

A. \(\langle \frac{9}{2};\frac{11}{2}\rangle\)

B. \(\langle \frac{11}{2};\frac{13}{2}\rangle\)

C. \(\langle \frac{13}{2};\frac{19}{2}\rangle\)

D. \(\langle \frac{19}{2};\frac{37}{2}\rangle\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 24 - maturalne.

Z odcinków o długościach: \(5, 2a+1, a-1\) można zbudować trójkąt równoramienny. Wynika stąd, że

A. \(a=6\)

B. \(a=4\)

C. \(a=3\)

D. \(a=2\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 25 - maturalne.

Proste opisane równaniami \(y=\frac{2}{m-1}x+m-2\) oraz \(y=mx+\frac{1}{m+1}\) są prostopadłe, gdy:

A. \(m=2\)

B. \(m=\frac{1}{2}\)

C. \(m=\frac{1}{3}\)

D. \(m=-2\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 26 - maturalne.

W układzie współrzędnych dane są punkty \(A=(a,6)\) oraz \(B=(7,b)\). Środkiem odcinka \(AB\) jest punkt \(M=(3,4)\). Wynika stąd, że:

A. \(a=5\) i \(b=5\)

B. \(a=-1\) i \(b=2\)

C. \(a=4\) i \(b=10\)

D. \(a=-4\) i \(b=-2\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 27 - maturalne.

Punkty \(A=(30,32)\) i \(B=(0,8)\) są sąsiednimi wierzchołkami czworokąta \(ABCD \) wpisanego w okrąg. Prosta o równaniu \(x-y+2=0\) jest jedyną osią symetrii tego czworokąta i zawiera przekątną \(AC\). Oblicz współrzędne wierzchołków \(C\) i \(D\) tego czworokąta.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 28 - maturalne.

Parabola o równaniu \(y=2-\frac{1}{2}x^2\) przecina oś \(Ox\) układu współrzędnych w punktach \(A=(- 2,0)\) i \(B=(2,0)\). Rozpatrujemy wszystkie trapezy równoramienne \(ABCD\), których dłuższą podstawą jest odcinek \(AB\), a końce \(C\) i \(D\) krótszej podstawy leżą na paraboli (zobacz rysunek).

Zadanie 16, ilustracja, matura 2016

Wyznacz pole trapezu \(ABCD\) w zależności od pierwszej współrzędnej wierzchołka \(C\). Oblicz współrzędne wierzchołka \(C\) tego z rozpatrywanych trapezów, którego pole jest największe.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 29 - maturalne.

Odległość początku układu współrzędnych od prostej o równaniu \(y = 2x + 4\) jest równa

A. \(\frac{\sqrt{5}}{5}\)

B. \(\frac{4\sqrt{5}}{5}\)

C. \(\frac{4}{5}\)

D. \(4\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 30 - maturalne.

Proste o równaniach \(y=(m+2)x+3\) oraz \(y=(2m−1)x−3\) są równoległe, gdy

A. \(m=2\)

B. \(m=3\)

C. \(m=0\)

D. \(m=1\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 31 - maturalne.

Punkt \(A=(7,−1)\) jest wierzchołkiem trójkąta równoramiennego \(ABC\), w którym \(|AC|=|BC|\). Obie współrzędne wierzchołka \(C\) są liczbami ujemnymi. Okrąg wpisany w trójkąt ABC ma równanie \(x^2+y^2=10\). Oblicz współrzędne wierzchołków \(B\) i \(C\) tego trójkąta.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 32 - maturalne.

Dane są punkty o współrzędnych \(A=(−2, 5)\) oraz \(B=(4, −1)\). Średnica okręgu wpisanego
w kwadrat o boku \(AB\) jest równa

A. \(12\)

B. \(6\)

C. \(6\sqrt{2}\)

D. \(2\sqrt{6}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 33 - maturalne.

Dany jest punkt \(A=(−18,10)\). Prosta o równaniu \(y=3x\) jest symetralną odcinka \(AB\). Wyznacz współrzędne punktu \(B\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 34 - maturalne.

Punkt B jest obrazem punktu \(A=(−3,5)\) w symetrii względem początku układu współrzędnych. Długość odcinka \(AB\) jest równa

A. \(2\sqrt{34}\)

B. \(8\)

C. \(\sqrt{34}\)

D. \(12\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 35 - maturalne.

Prosta przechodząca przez punkty \(A=(8, −6)\) i \(B=(5, 15)\) jest styczna do okręgu o środku w punkcie \(O=(0, 0)\). Oblicz promień tego okręgu i współrzędne punktu styczności tego okręgu z prostą AB.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 36 - maturalne.

Punkty \(K=(4,−10)\) i \(L=(b,2)\) są końcami odcinka \(KL\). Pierwsza współrzędna środka odcinka \(KL\) jest równa (−12). Wynika stąd, że

A. \(b=-28\)

B. \(b=-14\)

C. \(b=-24\)

D. \(b=-10\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 37 - maturalne.

W kartezjańskim układzie współrzędnych \((x,y)\) dane są proste \(k\) oraz \(l\) o równaniach

\(k: y=\frac{2}{3}x\)

\(l: y=-\frac{3}{2}x+13\)

Dokończ zdanie. Wybierz odpowiedź \(A\) albo B oraz odpowiedź 1., 2. albo 3.

Proste \(k\) oraz \(l\) są

A. prostopadłe

B. nie sąprostopadłe

i przecinają się w punkcie \(P\) o współrzędnych

1. \((−6,−4)\)

2. \((6,4)\)

3. \((−6,4)\)

Pokaż rozwiązanie zadania.





Liczba odnalezionych zadań w zbiorze: 37.

Oznaczenia

zadanie maturalne Zadania maturalne — poziom podstawowy. zadanie maturalne Zadania maturalne — poziom rozszerzony.

Zbiór zadań z matematyki
Zbiór wszystkich zadań z matematyki wraz z pełnymi rozwiązaniami.
AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.
Planimetria
Planimetria to dział geometrii, który bada figury geometryczne i związki między nimi na płaszczyźnie. Planimetria jest geometrią płaszczyzny.

 



Udostępnij
©® Media Nauka 2008-2023 r.