Zadania — potęgowanie

Znajdziesz tutaj zadania na potęgowanie, w tym zadania na wzory skróconego mnożenia. Zadania są z pełnymi rozwiązaniami. Są tu zadania autorskie oraz maturalne na poziomie podstawowym i rozszerzonym z kilku ostatnich lat.


Zadanie nr 1.

Uprościć wyrażenie:

\(\Large \frac{6^{\frac{4}{3}}\cdot (\frac{3}{8})^{0,25}\cdot 2^{-0,(3)}\cdot (\frac{3}{2})^{\frac{3}{5}}}{2^{\frac{3}{20}}\cdot 3^{\frac{11}{60}}}\)

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Uprościć wyrażenie:

\(\Large \frac{(x^{\frac{1}{4}}+1)(x^{-\frac{1}{4}}-1)}{3x^{\frac{1}{4}}}-\frac{3}{2x^{\frac{3}{4}}}\)

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Uprościć wyrażenie:

\(W=[(a^3-x^2)^{\frac{1}{2}}-1][(a^3-x^2)^{\frac{1}{2}}+1]-a^3+\\+x^2+(a^3-x^2)^{-\frac{1}{2}}+a^{\frac{1}{2}}(a^2-\frac{x^2}{a})^{-\frac{1}{2}}+1\)

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Oblicz:

\(3^2\cdot 9^8\cdot (\frac{1}{3})^{-3}\cdot 27^{-5}\cdot 3^{\frac{1}{3}}\cdot 9^{\frac{1}{3}}\)

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Oblicz wartość wyrażenia:

\([(\frac{1}{5})^{-\frac{1}{2}}]^4+5\cdot 5^{-2}-(\frac{1}{5^3})^{-1}\)

Pokaż rozwiązanie zadania.

Zadanie nr 6.

Oblicz wartość wyrażenia, korzystając z własności potęg:

\((5^{-\frac{1}{2}})^{5^{\frac{1}{3}}\cdot 25^{-\frac{2}{3}}}\)

Pokaż rozwiązanie zadania.

Zadanie nr 7.

Korzystając z własności działań na pierwiastkach lub potęgach, oblicz:

\(\sqrt{2}\cdot \sqrt[3]{2}\)

Pokaż rozwiązanie zadania.

Zadanie nr 8.

Korzystając z własności działań na pierwiastkach lub potęgach oblicz: \(\sqrt{2}\cdot \sqrt[4]{4}:\sqrt[5]{16}\).

Pokaż rozwiązanie zadania.

Zadanie nr 9.

Oblicz wartość wyrażenia: \(\sqrt{\sqrt[5]{\sqrt[4]{2^{48}}}}\)

Pokaż rozwiązanie zadania.

Zadanie nr 10.

Obliczyć:

a) \((5xy-7)^2\)

b) \((\sqrt{2}-\sqrt{6})^2\)

Pokaż rozwiązanie zadania.

Zadanie nr 11.

Obliczyć \((x+4-y)^2\).

Pokaż rozwiązanie zadania.

Zadanie nr 12.

Rozłożyć na czynniki wyrażenie \(x^4-y^4\).

Pokaż rozwiązanie zadania.

Zadanie nr 13.

Sprawdzić, czy liczby \(1, \sqrt{2}\) są pierwiastkami wielomianu

\(W(x)=\sqrt{2}x^5-2x^4-\sqrt{2}x^3+3x^2-2\sqrt{2}x+2\).

Pokaż rozwiązanie zadania.

Zadanie nr 14.

Oblicz:

a) \((5+2x)^2\)

b) \((a-\frac{1}{2})^2\)

c) \((\sqrt{2}-2+\sqrt{3})^2\)

Pokaż rozwiązanie zadania.

Zadanie nr 15.

Oblicz:

a) \((1-\frac{\sqrt{2}}{2})(1+\frac{\sqrt{2}}{2})\)

b) \((1+\sqrt{2})^3\)

c) \((\sqrt{3}-\sqrt{2})^3\)

d) \((5xy-\sqrt{2}x)^2\)

e) \((1+\sqrt{2}-\sqrt{3}-\sqrt{5})^2\)

Pokaż rozwiązanie zadania.

Zadanie nr 16.

Rozłożyć na czynniki wyrażenie \(24-10a+a^2\), korzystając ze wzorów skróconego mnożenia.

Pokaż rozwiązanie zadania.

Zadanie nr 17.

Rozłożyć na czynniki wyrażenie \(12a^2-12a+3\), korzystając ze wzorów skróconego mnożenia.

Pokaż rozwiązanie zadania.

Zadanie nr 18.

Rozłożyć na czynniki sumę \(2\sqrt{2}+a\sqrt{2}-2\sqrt{3}-a\sqrt{3}\).

Pokaż rozwiązanie zadania.

Zadanie nr 19.

Pozbyć się niewymierności z mianownika

a) \(\frac{7}{1-\sqrt{7}}\)

b) \(\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 20 - maturalne.

Dla każdej dodatniej liczby a iloraz \(\frac{a^{-2,6}}{a^{1,3}}\) jest równy:

A. \(a^{-3,9}\)

B. \(a^{-2}\)

C. \(a^{-1,3}\)

D. \(a^{1,3}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 21 - maturalne.

Równość \((2\sqrt{2}-a)^2=17-12\sqrt{2}\) jest prawdziwa dla:

A. \(a=3\)

B. \(a=1\)

C. \(a=-2\)

D. \(a=-3\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 22 - maturalne.

Funkcja f określona jest wzorem \(f(x)=\frac{2x^3}{x^6+1}\) dla każdej liczby rzeczywistej \(x\). Wtedy \(f(-\sqrt[3]{3})\) jest równa:

A. \(-\frac{\sqrt[3]{9}}{2}\)

B. \(-\frac{3}{5}\)

C. \(\frac{3}{5}\)

D. \(\frac{3}{5}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 23 - maturalne.

W rozwinięciu wyrażenia \((2\sqrt{3}x+4y)^3\) współczynnik przy iloczynie \(xy^2\) jest równy

A. \(32\sqrt{3}\)

B. \(48\)

C. \(96\sqrt{3}\)

D. \(144\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 24 - maturalne.

Równość \(\frac{m}{5-\sqrt{5}}=\frac{5+\sqrt{5}}{5}\) zachodzi dla:

A. \(m=5\)

B. \(m=4\)

C. \(m=1\)

D. \(m=-5\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 25 - maturalne.

Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y prawdziwa jest nierówność 4x^2-8xy+5y^2\geq 0

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 26 - maturalne.

Liczba \((3-2\sqrt{3})^3\) jest równa:

A. \(27-24\sqrt{3}\)

B. \(27-30\sqrt{3}\)

C. \(135-78\sqrt{3}\)

D. \(135-30\sqrt{3}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 27 - maturalne.

Udowodnij, że dla każdej liczby rzeczywistej \(x\) prawdziwa jest nierówność \(x^4-x^2-2x+3>0\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 28 - maturalne.

Wartość wyrażenia \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\) jest równa:

A. \(-2\)

B. \(-2\sqrt{3}\)

C. \(2\)

D. \(2\sqrt{3}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 29 - maturalne.

Liczba \(\Bigl(\frac{1}{(\sqrt[3]{729}+\sqrt[4]{256}+2)^0}\Bigr)^{-2}\) jest równa:

A. \(\frac{1}{125}\)

B. \(\frac{1}{15}\)

C. \(1\)

D. \(15\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 30 - maturalne.

Liczba \(5^8*16^{(-2)}\) jest równa

A. \((\frac{5}{2})^8\)

B. \((\frac{5}{8})^8\)

C. \(10^8\)

D. \(10\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 31 - maturalne.

Równanie \(x(x^2-4)(x^2+4)=0\) z niewiadomą \(x\):

A. nie ma rozwiązań w zbiorze liczb rzeczywistych.

B. ma dokładnie dwa rozwiązania w zbiorze liczb rzeczywistych.

C. ma dokładnie trzy rozwiązania w zbiorze liczb rzeczywistych.

D. ma dokładnie pięć rozwiązań w zbiorze liczb rzeczywistych.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 32 - maturalne.

Udowodnij, że dla dowolnych różnych liczb rzeczywistych \(x, y\) prawdziwa jest nierówność \(x^2y^2+2x^2+2y^2−8xy+4 > 0\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 33 - maturalne.

Dane są liczby \(a=3,6⋅10^{-12}\) oraz \(b=2,4⋅10^{-20}\). Wtedy iloraz \(\frac{a}{b}\) jest równy:

  1. \(8,64⋅10^{−32}\)
  2. \(1,5⋅10^{−8}\)
  3. \(1,5⋅10^{8}\)
  4. \(8,64⋅10^{32}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 34 - maturalne.

Liczba naturalna \(n=2^{14}\cdot 5^{15}\) w zapisie dziesiętnym ma

A. 14 cyfr

B. 15 cyfr

C. 16 cyfr

D. 30 cyfr

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 35 - maturalne.

Wykaż, że dla dowolnych liczb rzeczywistych \(a\) i \(b\) prawdziwa jest nierówność \(3a^2−2ab+3b^2\geq 0\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 36 - maturalne.

Wartość wyrażenia \(x^2−6x+9\) dla \(x=\sqrt{3}+3\) jest równa

A. \(1\)

B. \(3\)

C. \(1+2\sqrt{3}\)

D. \(1-2\sqrt{3}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 37 - maturalne.

Liczba \(\frac{2^{50}\cdot 3^{40}}{36^{10}}\) jest równa:

A. \(6^{70}\)

B. \(6^{45}\)

C. \(2^{30}\cdot 3^{20}\)

D. \(2^{10}\cdot 3^{20}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 38 - maturalne.

Funkcja \(f\) jest określona wzorem \(f(x)=4^{-x}+1\) dla każdej liczby rzeczywistej \(x\). Liczba \(f(\frac{1}{2})\) jest równa.

A. \(\frac{1}{2}\)

B. \(\frac{3}{2}\)

C. \(3\)

D. \(17\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 39 - maturalne.

Po przekształceniu wyrażenia algebraicznego \((x\sqrt{2}+y\sqrt{3})^4\) do postaci \(ax^4+bx^3y+cx^2y^2+dxy^3+ey^4\) współczynnik \(c\) jest równy

A. \(6\)

B. \(36\)

C. \(8\sqrt{6}\)

D. \(12\sqrt{6}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 40 - maturalne.

Liczby dodatnie \(a\) i \(b\) spełniają równość \(a^2+2a=4b^2+4b\). Wykaż, że \(a=2b\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 41 - maturalne.

Liczba \(100^5\cdot (0,1)^{-6}\) jest równa

A. \(10^{13}\)

B. \(10^{16}\)

C. \(10^{-1}\)

D. \(10^{-30}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 42 - maturalne.

Liczba \((2\sqrt{8}-3\sqrt{2})^2\) jest równa

A. \(2\)

B. \(1\)

C. \(26\)

D. \(14\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 43 - maturalne.

Liczba \(3^{2+\frac{1}{4}}\) jest równa

A. \(3^2\cdot \sqrt[4]{3}\)

B. \(\sqrt[4]{3^2}\)

C. \(3^2 +\sqrt[4]{3}\)

D. \(3^2\cdot \sqrt{3^4}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 44 - maturalne.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Dla każdej liczby rzeczywistej \(a\) wyrażenie \((2a-3)^2-(3a+3)^2\) jest równe

A. \(-24a\)

B. \(0\)

C. \(18\)

D. \(16a^2-24a\)

Pokaż rozwiązanie zadania.





Liczba odnalezionych zadań w zbiorze: 44.

Oznaczenia

zadanie maturalne Zadania maturalne — poziom podstawowy. zadanie maturalne Zadania maturalne — poziom rozszerzony.

Zbiór zadań z matematyki
Zbiór wszystkich zadań z matematyki wraz z pełnymi rozwiązaniami.
AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.
Działania matematyczne
Działania matematyczne - dział kursu matematyki

 



Udostępnij
©® Media Nauka 2008-2025 r.