Zadania — rachunek prawdopodobieństwa
Znajdziesz tutaj zadania z rachunku prawdopodobieństwa. To zadania z rozwiązaniami. Są tu zadania autorskie oraz maturalne na poziomie podstawowym i rozszerzonym z kilku ostatnich lat.
Zadanie nr 1.
Losujemy dwie osoby z grupy osób, w której znajduje się 4 chłopaków i 3 dziewczyny. Jakie jest prawdopodobieństwo wylosowania pary dziewczyna i chłopak?
Zadanie nr 2.
Rzucamy trzy razy monetą. Jakie jest prawdopodobieństwo wyrzucenia co najmniej dwa razy orła?
Zadanie nr 3.
Oblicz prawdopodobieństwo wyrzucenia co najmniej trzech oczek symetryczną kością do gry.
Zadanie nr 4.
Z urny zawierającej 8 kul czarnych i 4 białych losujemy kolejno bez zwracania dwie kule. Jakie jest prawdopodobieństwo wylosowania:
a) dwóch takich samych kul.
b) dwóch różnych kul.
c) kuli białej, a potem czarnej.
Zadanie nr 5.
Jakie jest prawdopodobieństwo, że pośród wylosowanych trzech osób z klasy liczącej 25 osób znajduje się jedna dziewczyna i dwóch chłopców? W klasie jest 12 dziewcząt.
Zadanie nr 6.
Dwie firmy wyprodukowały łącznie 5000 butów, przy czym firma pierwsza wyprodukowała ich 2000. Wśród butów wyprodukowanych przez pierwszą firmę jest 80% sandałów, a przez drugą firmę 65% butów to sandały. Losujemy jedną parę butów. Jakie jest prawdopodobieństwo wylosowania sandałów?
Zadanie nr 7.
W meczu piłki nożnej prawdopodobieństwo zdobycia przez zawodnika bramki z rzutu karnego wynosi 0,85. Zawodnik wykonuje 6 rzutów karnych. Jakie jest prawdopodobieństwo, że zdobędzie on:
a) 4 bramki
b) co najmniej 5 bramek
c) mniej niż 3 bramki?
Zadanie nr 8.
W pudełku jest 5 krówek i 4 irysy. Losujemy 5 razy po dwa cukierki i za każdym razem zwracamy je do pudełka. Jakie jest prawdopodobieństwo, że 3 razy wylosujemy różne cukierki?
Zadanie nr 9 - maturalne.
Rzucamy trzy razy symetryczną monetą. Niech p oznacza prawdopodobieństwo otrzymania dokładnie dwóch orłów w tych trzech rzutach. Wtedy
A. \(0\leq p<0,2\)
B. \(0,2\leq p\leq 0,35\)
C. \(0,35<p\leq 0,5\)
D. \(0,5<p\leq 1\)
Zadanie nr 10 - maturalne.
Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy kolejno dwa razy po jednej liczbie bez zwracania. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie równa 30. Wynik zapisz w postaci ułamka zwykłego nieskracalnego.
Zadanie nr 11 - maturalne.
Wśród 10 tysięcy mieszkańców pewnego miasta przeprowadzono sondaż dotyczący budowy przedszkola publicznego. Wyniki sondażu przedstawiono w tabeli.
Badane grupy | Liczba osób popierających budowę przedszkola | Liczba osób niepopierających budowy przedszkola |
Kobiety | 5140 | 1860 |
Mężczyźni | 2260 | 740 |
Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że losowo wybrana osoba, spośród ankietowanych, popiera budowę przedszkola, jeśli wiadomo, że jest mężczyzną. Zakoduj trzy pierwsze cyfry po przecinku nieskończonego rozwinięcia dziesiętnego otrzymanego wyniku.
Zadanie nr 12 - maturalne.
W każdym z trzech pojemników znajduje się para kul, z których jedna jest czerwona, a druga – niebieska. Z każdego pojemnika losujemy jedną kulę. Niech \(p\) oznacza prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie dwie z trzech wylosowanych kul będą czerwone. Wtedy:
A. \(p=\frac{1}{4}\)
B. \(p=\frac{3}{8}\)
C. \(p=\frac{1}{2}\)
D. \(p=\frac{2}{3}\)
Zadanie nr 13 - maturalne.
Wśród 115 osób przeprowadzono badania ankietowe, związane z zakupami w pewnym kiosku. W poniższej tabeli przedstawiono informacje o tym, ile osób kupiło bilety tramwajowe ulgowe oraz ile osób kupiło bilety tramwajowe normalne.
Rodzaj kupionych biletów | Liczba osób |
ulgowe | 76 |
normalne | 41 |
Uwaga! 27 osób spośród ankietowanych kupiło oba rodzaje biletów.
Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że osoba losowo wybrana spośród ankietowanych nie kupiła żadnego biletu. Wynik przedstaw w formie nieskracalnego ułamka.
Zadanie nr 14 - maturalne.
W pierwszej urnie umieszczono 3 kule białe i 5 kul czarnych, a w drugiej urnie 7 kul białych i 2 kule czarne. Losujemy jedną kulę z pierwszej urny, przekładamy ją do urny drugiej i dodatkowo dokładamy do urny drugiej jeszcze dwie kule tego samego koloru, co wylosowana kula. Następnie losujemy dwie kule z urny drugiej. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że obie kule wylosowane z drugiej urny będą białe.
Zadanie nr 15 - maturalne.
Jeżeli \(A\) jest zdarzeniem losowym, a \(A'\) zdarzeniem przeciwnym do zdarzenia \(A\) oraz zachodzi równość \(P(A)=2P(A')\), to:
A. \(P(A)=\frac{2}{3}\)
B. \(P(A)=\frac{1}{2}\)
C. \(P(A)=\frac{1}{3}\)
D. \(P(A)=\frac{1}{6}\)
Zadanie nr 16 - maturalne.
Ze zbioru liczb \(\lbrace 1, 2, 3, 4, 5, 6, 7, 8\rbrace \) losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia \(A\), polegającego na wylosowaniu liczb, z których pierwsza jest większa od drugiej o \(4\) lub \(6\).
Zadanie nr 17 - maturalne.
W dwóch pudełkach umieszczono po pięć kul, przy czym w pierwszym pudełku: 2 kule białe i 3 kule czerwone, a w drugim pudełku: 1 kulę białą i 4 kule czerwone. Z pierwszego pudełka losujemy jedną kulę i bez oglądania wkładamy ją do drugiego pudełka. Następnie losujemy jedną kulę z drugiego pudełka. Oblicz prawdopodobieństwo wylosowania kuli białej z drugiego pudełka.
Zadanie nr 18 - maturalne.
W pudełku jest 50 kuponów, wśród których jest 15 kuponów przegrywających, a pozostałe kupony są wygrywające. Z tego pudełka w sposób losowy wyciągamy jeden kupon. Prawdopodobieństwo zdarzenia polegającego na tym, że wyciągniemy kupon wygrywający, jest równe
- \(\frac{15}{35}\)
- \(\frac{1}{50}\)
- \(\frac{15}{30}\)
- \(\frac{35}{50}\)
Zadanie nr 19 - maturalne.
Dane są dwa zbiory: \(A = \lbrace 100, 200, 300, 400, 500, 600, 700\rbrace \) i \(B = \lbrace 10,11,12,13,14,15,16\rbrace \). Z każdego z nich losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie podzielna przez \(3\). Obliczone prawdopodobieństwo zapisz w postaci nieskracalnego ułamka zwykłego.
Zadanie nr 20 - maturalne.
Z liczb ośmioelementowego zbioru \(Z=\lbrace 1, 2, 3, 4, 5, 6, 7, 9\rbrace\) tworzymy ośmiowyrazowy ciąg, którego wyrazy nie powtarzają się. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że żadne dwie liczby parzyste nie są sąsiednimi wyrazami utworzonego ciągu. Wynik przedstaw w postaci ułamka zwykłego nieskracalnego.
Zadanie nr 21 - maturalne.
W pudełku jest 40 kul. Wśród nich jest 35 kul białych, a pozostałe to kule czerwone. Prawdopodobieństwo wylosowania każdej kuli jest takie samo. Z pudełka losujemy jedną kulę. Prawdopodobieństwo zdarzenia polegającego na tym, że otrzymamy kulę czerwoną, jest równe
A. \(\frac{1}{8}\)
B. \(\frac{1}{5}\)
C. \(\frac{1}{40}\)
D. \(\frac{1}{35}\)
Zadanie nr 22 - maturalne.
Ze zbioru liczb {1, 2, 3, 4, 5} losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A polegającego na wylosowaniu liczb, których iloczyn jest liczbą nieparzystą.
Zadanie nr 23 - maturalne.
Ze zbioru {1, 2, 3, 4, 5, 6, 7, 8, 9} losujemy kolejno ze zwracaniem trzy liczby. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie dwie spośród trzech wylosowanych liczb będą równe. Wynik zapisz w postaci ułamka nieskracalnego.
Zadanie nr 24 - maturalne.
Rzucamy dwa razy symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego oczka do sześciu oczek. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że co najmniej jeden raz wypadnie ścianka z pięcioma oczkami.
Zadanie nr 25 - maturalne.
Mamy dwie urny. W pierwszej są 3 kule białe i 7 kul czarnych, w drugiej jest jedna kula biała i 9 kul czarnych. Rzucamy symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek, od jednego oczka do sześciu oczek. Jeśli w wyniku rzutu otrzymamy ściankę z jednym oczkiem, to losujemy jedną kulę z pierwszej urny, w przeciwnym przypadku — losujemy jedną kulę z drugiej urny. Wtedy prawdopodobieństwo wylosowania kuli białej jest równe
A. 2/15
B. 1/5
C. 4/5
D. 13/5
Zadanie nr 26 - maturalne.
Z wierzchołków sześcianu \(ABCDEFGH\) losujemy jednocześnie dwa różne wierzchołki. Prawdopodobieństwo tego, że wierzchołki te będą końcami przekątnej sześcianu \(ABCDEFGH\), jest równe
A. \(\frac{1}{7}\)
B. \(\frac{4}{7}\)
C. \(\frac{1}{14}\)
D. \(\frac{3}{7}\)
Zadanie nr 27 - maturalne.
Gracz rzuca dwukrotnie symetryczną sześcienną kostką do gry i oblicza sumę liczb wyrzuconych oczek. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że suma liczb wyrzuconych oczek jest równa 4 lub 5, lub 6.
Zadanie nr 28 - maturalne.
Ze zbioru wszystkich liczb naturalnych czterocyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest podzielna przez 15, jeśli wiadomo, że jest ona podzielna przez 18.
Zadanie nr 29 - maturalne.
Ze zbioru dziewięcioelementowego M = {1, 2, 3, 4, 5, 6, 7, 8, 9} losujemy kolejno ze zwracaniem dwa razy po jednej liczbie. Zdarzenie A polega na wylosowaniu dwóch liczb ze zbioru M, których iloczyn jest równy 24. Oblicz prawdopodobieństwo zdarzenia A.
Zadanie nr 30 - maturalne.
Dane są dwie urny z kulami. W każdej z urn jest siedem kul. W pierwszej urnie są jedna kula biała i sześć kul czarnych, w drugiej urnie są cztery kule białe i trzy kule czarne. Rzucamy jeden raz symetryczną monetą. Jeżeli wypadnie reszka, to losujemy jedną kulę z pierwszej urny, w przeciwnym przypadku – jedną kulę z drugiej urny. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy kulę białą w tym doświadczeniu, jest równe
A. \(\frac{5}{14}\)
B. \(\frac{9}{14}\)
C. \(\frac{5}{7}\)
D. \(\frac{6}{7}\)
Zadanie nr 31 - maturalne.
Ze zbioru ośmiu liczb {2,3,4,5,6,7,8,9} losujemy ze zwracaniem kolejno dwa razy po jednej liczbie. Oblicz prawdopodobieństwo zdarzenia \(A\) polegającego na tym, że iloczyn wylosowanych liczb jest podzielny przez \(15\). Zapisz obliczenia.
Zadanie nr 32 - maturalne.
Tomek i Romek postanowili rozegrać między sobą pięć partii szachów. Prawdopodobieństwo wygrania pojedynczej partii przez Tomka jest równe \(\frac{1}{4}\). Oblicz prawdopodobieństwo wygrania przez Tomka co najmniej czterech z pięciu partii. Wynik podaj w postaci ułamka zwykłego nieskracalnego. Zapisz obliczenia.
Liczba odnalezionych zadań w zbiorze: 32.
Oznaczenia
Zadania maturalne — poziom podstawowy. Zadania maturalne — poziom rozszerzony.