Zadania — wektory

Znajdziesz tutaj zadania z rachunku wektorowego, obejmującego podstawowe działania na wektorach, własności wektorów. To zadania z rozwiązaniami. Są tu zadania autorskie oraz maturalne na poziomie podstawowym i rozszerzonym z kilku ostatnich lat.


Zadanie nr 1.

Wektory \(\vec{a}=[1,2], \vec{b}=[-3,4]\) wyznaczają trójkąt. Obliczyć jego pole.

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Dane są punkty \(A=(3,-5), B=(1,5), C=(-3,2)\). Znaleźć współrzędne wektorów \(\vec{AB}, \ \vec{BA},\ \vec{AC},\ \vec{CB}\).

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Zaznaczyć w układzie współrzędnych wektory zaczepione w punkcie \(A=(1,1)\), określone następująco:

\(\vec{a}=[1,3]\)

\(\vec{b}=[-1,2]\)

\(\vec{c}=2\vec{i}-3\vec{j}\)

\(\vec{d}=\vec{i}-\vec{j}\)

\(\vec{e}=5\vec{i}\)

\(\vec{f}=-\vec{j}\)

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Znaleźć współrzędne punktu \(B\), jeżeli wiadomo, że \(A=(2,2)\) i

a) \(\vec{AB}=[-2,-3]\)

b) \(\vec{AB}=2\vec{i}+4\vec{j}\)

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Dany jest prostokąt \(ABCD\), gdzie \(A=(1,1), B=(5,1), C=(5,3), D=(1,3)\). Znaleźć współrzędne wektorów \(\vec{AD}, \vec{CA}, \vec{BD}, \vec{CD}\).

Pokaż rozwiązanie zadania.

Zadanie nr 6.

Rozwiązanie zadania: Oblicz długość wektora:

a) \(\vec{a}=[-3,4]\)

b) \(\vec{b}=5\vec{i}-2\vec{j}\)

c) \(\vec{c}=-\vec{j}\)

d) \(\vec{0}\)

e) \(\vec{AB}, A=(2,3), B=(-2,-3)\)

Pokaż rozwiązanie zadania.

Zadanie nr 7.

Dany jest punkt \(A=(-1,1)\). Znaleźć punkt \(B\), jeżeli wiadomo, że \(|\vec{AB}|=4\).

Pokaż rozwiązanie zadania.

Zadanie nr 8.

Obliczyć długość wektora \(\vec{a}=[1,1,1]\).

Pokaż rozwiązanie zadania.

Zadanie nr 9.

Dany jest prostokąt \(ABCD\). Zaznacz na rysunku wektory:

\(\vec{a}=\vec{AB}+\vec{BC},\ \vec{b}=\vec{AD}+\vec{BA}\)

\(\vec{c}=\vec{DC}+\vec{AB},\ \vec{d}=\vec{AB}+\vec{CB}\)

Pokaż rozwiązanie zadania.

Zadanie nr 10.

Dany jest trapez równoramienny \(ABCD\). Zaznacz na rysunku wektory:

\(\vec{a}=\vec{AB}+\vec{BC},\ \vec{b}=\vec{AB}+\vec{BC}+\vec{CD},\)

\(\vec{c}=\vec{AB}+\vec{BC}+\vec{CD}+\vec{DA},\ \vec{d}=\vec{AB}+\vec{BC}+\vec{DC}\)

Pokaż rozwiązanie zadania.

Zadanie nr 11.

Dane są wektory \(\vec{a}, \vec{b}\), pokazane na poniższym rysunku. Znaleźć graficznie wektor \(\vec{c}\), jeżeli wiadomo, że \(\vec{a}+\vec{c}=\vec{b}\).

Wektory

Pokaż rozwiązanie zadania.

Zadanie nr 12.

Znaleźć graficznie sumę wektorów \(\vec{a}=[-2,3], \vec{b}=[2,1]\):

a) metodą trójkąta

b) metodą równoległoboku.

Pokaż rozwiązanie zadania.

Zadanie nr 13.

Znaleźć graficznie różnicę wektorów \(\vec{a}=[2,-3], \vec{b}=[-2,-3]\),

Pokaż rozwiązanie zadania.

Zadanie nr 14.

Dane są wektory \(\vec{a}, \vec{b}\), pokazane na poniższym rysunku. Znaleźć graficznie wektor \(\vec{c}\) taki, że \(\vec{b}-\vec{c}=\vec{a}\).

Wektory

Pokaż rozwiązanie zadania.

Zadanie nr 15.

Dane są wektory \(\vec{a}=[-2,3], \vec{b}=[3,-3], \vec{c}=[2,4]\). Znaleźć:

  • \(\vec{a}+\vec{b}\)
  • \(-\vec{a}+\vec{c}\)
  • \(\vec{a}+\vec{b}+\vec{c}\)
  • \(\vec{b}-\vec{a}\)
  • \(\vec{c}-\vec{a}+\vec{b}\)
  • \(\ 5\vec{a}-3\vec{b}\)

Pokaż rozwiązanie zadania.

Zadanie nr 16.

Dany jest trapez równoramienny \(ABCD\). Znaleźć graficznie wektory:

\(\vec{a}=\vec{AB}-\vec{BC}, \vec{b}=\vec{AB}-\vec{CD}, \vec{c}=\vec{BC}-\vec{AD}\)

Pokaż rozwiązanie zadania.

Zadanie nr 17.

Dane są wektory \(\vec{a}=-5\vec{i}+6\vec{j}, \vec{b}=3\vec{i}-4\vec{j}, \vec{c}=\vec{i}-4\vec{j}\). Oblicz \(\vec{a}+\vec{b}, \vec{c}+\vec{b}, \vec{a}+\vec{b}-\vec{c}\).

Pokaż rozwiązanie zadania.

Zadanie nr 18.

Dany jest prostokąt \(ABCD\). Znaleźć graficznie wektor \(\vec{AB}-\vec{AD}-\vec{CA}-\vec{DC}\).

Pokaż rozwiązanie zadania.

Zadanie nr 19.

Dany jest wektor \(\vec{a}=[2,4]\). Jakie współrzędne ma wektor \(\vec{b}\), jeżeli wiadomo, że \(\vec{a}-\vec{b}=[7,7]\)?

Pokaż rozwiązanie zadania.

Zadanie nr 20.

Dany jest trapez równoramienny \(ABCD\). Znaleźć graficznie metodą równoległoboku wektor \(\vec{AD}+\vec{BC}\) (sumę wektorów wyznaczonych przez ramiona trapezu).

Pokaż rozwiązanie zadania.

Zadanie nr 21.

Dany jest trójkąt prostokątny \(ABC\). Znaleźć graficznie metodą równoległoboku wektor:

a) \(\vec{AB}+\vec{BC}+\vec{AC}\)

b) \(\vec{CA}+\vec{BC}\)

Pokaż rozwiązanie zadania.

Zadanie nr 22.

Dany jest prostokąt \(ABCD\). Znaleźć graficznie wektory \(\vec{AB}+\vec{DC}, \vec{BC}+\vec{DA}, \vec{DA}-\vec{BC}, \vec{CD}-\vec{BA}\).

Pokaż rozwiązanie zadania.

Zadanie nr 23.

Dany jest wektor \(\vec{AB}=[2,5]\) zaczepiony w punkcie \(A=(1,1)\). Znaleźć taki punkt \(C\), leżący na prostej \(y=2\), że pole trójkąta \(ABC\) jest równe 10.

Pokaż rozwiązanie zadania.

Zadanie nr 24.

Oblicz pole rombu \(ABCD\), jeżeli wiadomo, że \(A=(2,0), B=(3,2), C=(2,4), D=(1,2)\).

Pokaż rozwiązanie zadania.

Zadanie nr 25.

Obliczyć pole równoległoboku \(ABCD\), jeżeli wiadomo, że \(A=(1,1), B=(5,1), C=(7,3), D=(3,3)\).

Pokaż rozwiązanie zadania.

Zadanie nr 26.

Znaleźć współrzędne wektorów \(-5\vec{a}, 3\vec{b}\), jeżeli \(\vec{a}=[-3,4], \vec{b}=5\vec{i}-3\vec{j}\).

Pokaż rozwiązanie zadania.

Zadanie nr 27.

Dane są wektory \(\vec{a}=[3,-4], \vec{b}=[-15,20]\), wiadomo tez, że \(\vec{a}=k\vec{b}\). Znaleźć liczbę \(k\).

Pokaż rozwiązanie zadania.

Zadanie nr 28.

Dany jest wektor \(\vec{a}=[3,4]\). Przez jaką liczbę należy go pomnożyć, aby jego długość była równa 1?

Pokaż rozwiązanie zadania.

Zadanie nr 29.

Zbadać, czy wektory \(\vec{a}=[4,8], \vec{b}=[2,-1]\) są prostopadłe.

Pokaż rozwiązanie zadania.

Zadanie nr 30.

Jaki kąt tworzą ze sobą wektory \(\vec{a}, \vec{b}\), jeżeli ich iloczyn skalarny jest równy \(1\), a długości tych wektorów są równe odpowiednio \(2\) i \(1\)?

Pokaż rozwiązanie zadania.

Zadanie nr 31.

Dany jest wektor \(\vec{a}=[4,-5]\). Oblicz \(\vec{a}\circ 2\vec{a}\).

Pokaż rozwiązanie zadania.

Zadanie nr 32.

Dane są wektory \(\vec{a}=2\vec{i}-4\vec{j}, \vec{b}=2\vec{i}+3\vec{j}\). Oblicz \(\vec{a}\circ \vec{b}\).

Pokaż rozwiązanie zadania.

Zadanie nr 33.

Czy trójkąt wyznaczony przez wektory \(\vec{a}=[-2,4], \vec{b}=[3,1]\) jest trójkątem prostokątnym?

Pokaż rozwiązanie zadania.

Zadanie nr 34.

Zbadać, czy wektory \(\vec{a}=[12,24], \vec{b}=[-3,-6]\) są równoległe.

Pokaż rozwiązanie zadania.

Zadanie nr 35.

Dla jakiej wartości parametru \(m\) wektory \(\vec{a}=[2,-3], \vec{b}=[5,3m]\) są równoległe.

Pokaż rozwiązanie zadania.

Zadanie nr 36.

Dla jakiej wartości parametru \(m\) wektory \(\vec{a}=[m,3], \vec{b}=[4,-2m+1]\) są prostopadłe?

Pokaż rozwiązanie zadania.





Liczba odnalezionych zadań w zbiorze: 36.

Oznaczenia

zadanie maturalne Zadania maturalne — poziom podstawowy. zadanie maturalne Zadania maturalne — poziom rozszerzony.

Zbiór zadań z matematyki
Zbiór wszystkich zadań z matematyki wraz z pełnymi rozwiązaniami.
AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.
Rachunek wektorowy
Dział ten zajmuje się wektorami. Wektor to uporządkowana para punktów. Rachunek wektorowy odgrywa ważną rolę w wielu dziedzinach nauki.

 



Udostępnij
©® Media Nauka 2008-2025 r.