Zadanie - trójkąt prostokątny
Treść zadania:
W równoramiennym trójkącie prostokątnym przyprostokątne mają długość 10 cm. Obliczyć długość promienia okręgu opisanego na tym trójkącie.
Rozwiązanie zadania
Sporządzamy szkic.
Przyprostokątne mają tę samą długość, gdyż mamy do czynienia z trójkątem równoramiennym. Środek okręgu opisanego na trójkącie prostokątnym dzieli przeciwprostokątną na dwie równe części (promień tego okręgu to połowa przeciwprostokątnej). Powyższe wynika z twierdzenia, że trójkąt oparty na średnicy jest prostokątny.
Możemy skorzystać z twierdzenia Pitagorasa, które mówi, że w trójkącie prostokątnym kwadrat przeciwprostokątnej jest równy sumie kwadratów przyprostokątnych:
\((2R)^2=a^2+a^2\)
\(4R^2=2a^2/:4\)
\(R^2=\frac{1}{2}a^2\)
\(R=\frac{1}{\sqrt{2}}a \cdot \frac{\sqrt{2}}{\sqrt{2}} \)
\(R=\frac{a\sqrt{2}}{2}\)
Długość a jest dana, więc
\(a=10\ cm\)
\(R=\frac{a\sqrt{2}}{2}=\frac{10 \ cm \cdot \sqrt{2}}{2}=5\sqrt{2} \ cm\)
Odpowiedź
© medianauka.pl, 2011-02-07, ZAD-1135
Zadania podobne
Zadanie nr 1.
Na trójkącie prostokątnym o przyprostokątnych długości 3 i 4 opisano koło. Oblicz pole i obwód tego koła.
Zadanie nr 2.
W trójkącie prostokątnym jeden z kątów wewnętrznych ma miarę 30°. Oblicz miarę pozostałych kątów w tym trójkącie.
Zadanie nr 3.
W trójkącie prostokątnym miary dwóch kątów wewnętrznych są równe, a długość przeciwprostokątnej jest równa 6. Oblicz miarę kątów w tym trójkącie oraz długość boków.
Zadanie nr 4.
W trójkącie prostokątnym długości przyprostokątnych wynoszą odpowiednio 5 i 8. Oblicz długość przeciwprostokątnej.
Zadanie nr 5.
W trójkącie prostokątnym wysokość o długości \(2\sqrt{2}\) opuszczona z wierzchołka kąta prostego dzieli podstawę na dwa odcinki, z których jeden jest dwa razy dłuższy od drugiego. Oblicz długości boków trójkąta.
Zadanie nr 6.
Jaką długość mają przyprostokątne trójkąta prostokątnego, jeżeli wiadomo, że jedna z przyprostokątnych jest 3 razy dłuższa od drugiej i średnica okręgu opisanego na tym trójkącie ma długość równą \(\sqrt{10}\).
Zadanie nr 7.
Długość przeciwprostokątnej w trójkącie prostokątnym równoramiennym jest dwa razy większa od długości przyprostokątnej. Oblicz długości boków tego trójkąta.
Zadanie nr 8.
Znaleźć punkt na prostej \(y=1\), który wraz z punktami \(A=(2,3), B=(4,2)\) wyznaczy trójkąt prostokątny.
Zadanie nr 9 — maturalne.
Okręgi o promieniach 3 i 4 są styczne zewnętrznie. Prosta styczna do okręgu o promieniu 4 w punkcie \(P\) przechodzi przez środek okręgu o promieniu 3 (zobacz rysunek).
Pole trójkąta, którego wierzchołkami są środki okręgów i punkt styczności \(P\), jest równe:
A. \(14\)
B. \(2\sqrt{33}\)
C. \(4\sqrt{33}\)
D. \(12\)