Zadanie - trójkąt równoboczny

Treść zadania:

Dany jest trójkąt równoboczny o boku \(a\). Środki boków tego trójkąta dzielą dany trójkąt na mniejsze części. Oblicz wysokość mniejszego trójkąta leżącego w środku danego trójkąta.


ksiązki Rozwiązanie zadania

Sporządzamy szkic.

Trójkąt równoboczny

Zauważamy, że wszystkie trójkąty wyznaczone przez odcinki, które łączą środki boków są przystające (Zobacz zadanie 611). Łatwiej będzie wyznaczyć wysokość skrajnego trójkąta, którego podstawa jest dana. Korzystając z twierdzenia Pitagorasa, mamy:

\((\frac{1}{2}a)^2=h^2+(\frac{1}{4}a)^2\)

\(\frac{a^2}{4}=h^2+\frac{a^2}{16}\)

\(h^2=\frac{a^2}{4}-\frac{a^2}{16}\)

\(h^2=\frac{4a^2}{16}-\frac{a^2}{16}\)

\(h^2=\frac{3a^2}{16}\)

\(h=\sqrt{\frac{3a^2}{16}}\)

\( h=\frac{\sqrt{3}}{4}a\)

ksiązki Odpowiedź

\(h=\frac{\sqrt{3}}{4}a\)

© medianauka.pl, 2011-02-09, ZAD-1140

AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Na trójkącie równobocznym o boku \(a=1\) opisano okrąg. Oblicz obwód tego okręgu i pole koła wyznaczonego przez ten okrąg.

Pokaż rozwiązanie zadania.

Zadanie nr 2.

W trójkąt równoboczny o boku długości \(a=1\) wpisano koło. Oblicz jego pole i obwód.

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Znaleźć równanie okręgu opisanego na trójkącie równobocznym, wyznaczonym przez punkty \(A=(1,1), B=(5,1), C=(3,2\sqrt{3}+1)\).

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Dane są punkty \(A=(1,1), B=(4,-2)\). Znajdź punkt \(C\), który jest wierzchołkiem trójkąta równobocznego \(ABC\).

Pokaż rozwiązanie zadania.

Zadanie nr 5.

W trójkąt równoboczny o boku długości 2 wpisano kwadrat o polu 1. Oblicz wysokość trójkąta równoramiennego, wyznaczonego przez ten kwadrat.

Pokaż rozwiązanie zadania.

Zadanie nr 6.

Dany jest trójkąt równoboczny o boku a. Środki boków tego trójkąta dzielą dany trójkąt na mniejsze części. Wykaż, że wszystkie mniejsze trójkąty są przystające i są trójkątami równobocznymi.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 7 — maturalne.

Pole pewnego trójkąta równobocznego jest równe \(\frac{4\sqrt{3}}{9}\). Obwód tego trójkąta jest równy

A. 4

B. 2

C. \(\frac{4}{3}\)

D. 2/3

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 8 — maturalne.

Wysokość trójkąta równobocznego jest równa \(6\sqrt{3}\). Pole tego trójkąta jest równe

A. \(3\sqrt{3}\)

B. \(4\sqrt{3}\)

C. \(27\sqrt{3}\)

D. \(36\sqrt{3}\)

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2025 r.