Zadanie - trapez

Treść zadania:

Długość jednej z podstaw trapezu jest dwa razy większa od długości drugiej podstawy. Długość środkowej równoległej do podstaw jest równa 3. Obliczyć długości podstaw tego trapezu.


ksiązki Rozwiązanie zadania

Sporządzamy szkic:

trapez - zadanie

Środkowa trapezu jest to odcinek łączący środki ramion trapezu. Na rysunku oznaczono ją literka \(c\). Środkowa trapezu jest równoległa do podstaw trapezu, a jej długość jest równa średniej arytmetycznej długości podstaw tego trapezu, czyli:

\(c=\frac{a+b}{2}=\frac{a+2a}{2}=\frac{3a}{2}\)

\(c=3\)

\(3=\frac{3a}{2}/\cdot 2\)

\(3a=6/:3\)

\(a=2\)

\(b=2a=4\)


© medianauka.pl, 2011-02-26, ZAD-1178

AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

W trapezie prostokątnym długość podstaw jest równa odpowiednio 3 i 6, a długość krótszego z ramion 2. Oblicz długość dłuższego ramienia trapezu.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 2 — maturalne.

Punkt \(C=(0,2)\) jest wierzchołkiem trapezu \(ABCD\), którego podstawa AB jest zawarta w prostej o równaniu \(y=2x-4\). Wskaż równanie prostej zawierającej podstawę \(CD\).

A. \(y=\frac{1}{2}x+2\)

B. \(y=-2x+2\)

C. \(y=-\frac{1}{2}x+2\)

D. \(y=2x+2\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 3 — maturalne.

Wysokość trapezu równoramiennego o kącie ostrym 60° i ramieniu długości \(2\sqrt{3}\) jest równa:

A. \(\sqrt{3}\)

B. \(3\)

C. \(2\sqrt(3)\)

D. \(2\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 4 — maturalne.

Dany jest trapez prostokątny \(KLMN\), którego podstawy mają długości \(KL=a, MN=b,
a>b\). Kąt \(KLM\) ma miarę 60°. Długość ramienia \(LM\) tego trapezu jest równa:

Rysunek

A. \(a-b\)

B. \(2(a-b)\)

C. \(a+\frac{b}{2}\)

D. \((a+b)/2\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 5 — maturalne.

W trapezie prostokątnym \(ABCD\) dłuższa podstawa \(AB\) ma długość 8. Przekątna AC tego trapezu ma długość 4 i tworzy z krótszą podstawą trapezu kąt o mierze (zobacz rysunek). Oblicz długość przekątnej \(BD\) tego trapezu.

Rysunek

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 6 — maturalne.

Podstawą ostrosłupa czworokątnego ABCDS jest trapez \(ABCD (AB||CD)\). Ramiona tego trapezu mają długości \(AD=10\) i \(BC=16\), a miara kąta \(ABC\) jest równa 30°. Każda ściana boczna tego ostrosłupa tworzy z płaszczyzną podstawy kąt α, taki, że \(tg\alpha =\frac{9}{2}\). Oblicz objętość tego ostrosłupa.

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2023 r.