Zadanie - trapez

Treść zadania:

W trapezie prostokątnym długość podstaw jest równa odpowiednio 3 i 6, a długość krótszego z ramion 2. Oblicz długość dłuższego ramienia trapezu.


ksiązki Rozwiązanie zadania

Sporządzamy szkic:

trapez - szkic

Zaczniemy od wyznaczenia długość y, którą obliczymy odejmując od długości dłuższej podstawy długość podstawy krótszej (spójrz na rysunek).

\(b=a+y\)

\(y=b-a\)

\(y=6-3\)

\(y=3\)

Długość \(x\) ramienia trapezu obliczymy, korzystając z twierdzenia Pitagorasa, które mówi że w trójkącie prostokątnym kwadrat przeciwprostokątnej jest równy sumie kwadratów przyprostokątnych. Mamy więc:

\(x^2=c^2+y^2\)

\(x^2=2^2+3^2\)

\(x^2=4+9\)

\(x^2=13\)

\(x=\sqrt{13}\)

ksiązki Odpowiedź

\(x=\sqrt{13}\)

© medianauka.pl, 2011-02-26, ZAD-1179

AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Długość jednej z podstaw trapezu jest dwa razy większa od długości drugiej podstawy. Długość środkowej równoległej do podstaw jest równa 3. Obliczyć długości podstaw tego trapezu.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 2 — maturalne.

Punkt \(C=(0,2)\) jest wierzchołkiem trapezu \(ABCD\), którego podstawa AB jest zawarta w prostej o równaniu \(y=2x-4\). Wskaż równanie prostej zawierającej podstawę \(CD\).

A. \(y=\frac{1}{2}x+2\)

B. \(y=-2x+2\)

C. \(y=-\frac{1}{2}x+2\)

D. \(y=2x+2\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 3 — maturalne.

Wysokość trapezu równoramiennego o kącie ostrym 60° i ramieniu długości \(2\sqrt{3}\) jest równa:

A. \(\sqrt{3}\)

B. \(3\)

C. \(2\sqrt(3)\)

D. \(2\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 4 — maturalne.

Dany jest trapez prostokątny \(KLMN\), którego podstawy mają długości \(KL=a, MN=b,
a>b\). Kąt \(KLM\) ma miarę 60°. Długość ramienia \(LM\) tego trapezu jest równa:

Rysunek

A. \(a-b\)

B. \(2(a-b)\)

C. \(a+\frac{b}{2}\)

D. \((a+b)/2\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 5 — maturalne.

W trapezie prostokątnym \(ABCD\) dłuższa podstawa \(AB\) ma długość 8. Przekątna AC tego trapezu ma długość 4 i tworzy z krótszą podstawą trapezu kąt o mierze (zobacz rysunek). Oblicz długość przekątnej \(BD\) tego trapezu.

Rysunek

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 6 — maturalne.

Podstawą ostrosłupa czworokątnego ABCDS jest trapez \(ABCD (AB||CD)\). Ramiona tego trapezu mają długości \(AD=10\) i \(BC=16\), a miara kąta \(ABC\) jest równa 30°. Każda ściana boczna tego ostrosłupa tworzy z płaszczyzną podstawy kąt α, taki, że \(tg\alpha =\frac{9}{2}\). Oblicz objętość tego ostrosłupa.

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2025 r.