Zadanie - działania na wektorach równoległych
Treść zadania:
Dany jest prostokąt \(ABCD\). Znaleźć graficznie wektory \(\vec{AB}+\vec{DC}, \vec{BC}+\vec{DA}, \vec{DA}-\vec{BC}, \vec{CD}-\vec{BA}\).
Rozwiązanie zadania
Mamy tutaj do czynienia z wektorami równoległymi. Gdy dodajemy wektory równoległe stosujemy metodę trójkąta, czyli początek drugiego z wektorów zaczepiamy w końcu pierwszego i sumę znajdujemy łącząc początek pierwszego wektora z końcem drugiego:
\(\vec{AB}+\vec{DC}\)\(\vec{BC}+\vec{DA}\)
Mamy tutaj sumę dwóch wektorów przeciwnych. W wyniku otrzymujemy wektor zerowy: \(\vec{BC}+\vec{DA}=\vec{0}\)
Gdy odejmujemy wektory równoległe stosujemy tę samą metodę, co dla wektorów, które nie są równoległe, czyli sprowadzamy oba wektory do wspólnego początku, łączymy ich końce, zwrot różnicy obieramy do odjemnej:
\(\vec{DA}-\vec{BC}\)\(\vec{CD}-\vec{BA}\)Odejmujemy dwa równe wektory, więc w wyniku otrzymujemy wektor zerowy: \(\vec{CD}-\vec{BA}=\vec{0}\)
© medianauka.pl, 2011-03-11, ZAD-1215
Zadania podobne
Zadanie nr 1.
Znaleźć graficznie różnicę wektorów \(\vec{a}=[2,-3], \vec{b}=[-2,-3]\),
Zadanie nr 2.
Dane są wektory \(\vec{a}, \vec{b}\), pokazane na poniższym rysunku. Znaleźć graficznie wektor \(\vec{c}\) taki, że \(\vec{b}-\vec{c}=\vec{a}\).
Zadanie nr 3.
Dany jest trapez równoramienny \(ABCD\). Znaleźć graficznie wektory:
\(\vec{a}=\vec{AB}-\vec{BC}, \vec{b}=\vec{AB}-\vec{CD}, \vec{c}=\vec{BC}-\vec{AD}\)
Zadanie nr 4.
Dany jest prostokąt \(ABCD\). Znaleźć graficznie wektor \(\vec{AB}-\vec{AD}-\vec{CA}-\vec{DC}\).
Zadanie nr 5.
Dany jest wektor \(\vec{a}=[2,4]\). Jakie współrzędne ma wektor \(\vec{b}\), jeżeli wiadomo, że \(\vec{a}-\vec{b}=[7,7]\)?