Zadanie - symetria osiowa analitycznie

Treść zadania:

Znaleźć obraz okręgu \((x+2)^2+(y-1)^2=4\) w symetrii osiowej względem osi \(OY\). Sporządź odpowiednie wykresy w układzie współrzędnych.


ksiązki Rozwiązanie zadania

W symetrii osiowej względem osi OY obrazem pewnego punktu \(P=(x,y)\) jest punkt \(P'=(x',y')\). Zachodzą zależności między współrzędnymi punktu i jego obrazem:

\(x'=-x \)

\(y'=y\)

Mamy więc:

\((x+2)^2+(y-1)^2=4\)

\((-x'+2)^2+(y'-1)^2=4\)

\([-(x'-2)]^2+(y'-1)^2=4\)

\((-1)^2\cdot (x'-2)^2+(y'-1)^2=4\)

\((x'-2)^2+(y'-1)^2=4\)

Równanie okręgu o promieniu \(r\) i środku \(O=(x_S,y_S)\) ma postać:

\((x-x_s)^2+(y-y_s)^2=r^2\)

Zatem okrąg ma środek w punkcie \(O(-2,1)\) i promień \(r=2\), obraz ma środek w punkcie \(O'=(2,1)\) i promień \(r'=2\)

Rozwiązanie zadania 706, obraz okręgu w symetrii osiowej

ksiązki Odpowiedź

\((x'-2)^2+(y'-1)^2=4\)

© medianauka.pl, 2011-03-19, ZAD-1238

AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Znaleźć obraz kwadratu w symetrii osiowej względem prostej przechodzącej przez środki dwóch sąsiadujących boków tego kwadratu.

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Znaleźć obraz trójkąta prostokątnego w symetrii osiowej względem prostej przechodzącej przez tylko jeden z wierzchołków trójkąta równoległej do przyprostokątnej tego trójkąta.

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Znaleźć obraz trójkąta \(ABC\), gdzie \(A=(-2,3), B=(2,4), C=(2,-2)\) w symetrii osiowej względem osi \(OX\) i \(OY\).

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Znaleźć obraz krzywej \(y=3x^2-2x+1\) w symetrii osiowej względem osi \(OX\) i \(OY\).

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Znaleźć oś symetrii trójkąta \(ABC\), gdzie \(A=(1,1), B=(5,1), C=(3,3)\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 6 — maturalne.

Trójkąt \(ABC\) jest ostrokątny oraz \(|AC|>|BC|\). Dwusieczna \(d_C\) kąta \(ACB\) przecina bok \(AB\) w punkcie \(K\). Punkt \(L\) jest obrazem punktu \(K\) w symetrii osiowej względem dwusiecznej \(d_A\) kąta \(BAC\), punkt \(M\) jest obrazem punktu \(L\) w symetrii osiowej względem dwusiecznej \(d_C\) kąta \(ACB\), a punkt \(N\) jest obrazem punktu \(M\) w symetrii osiowej względem dwusiecznej \(d_B\) kąta \(ABC\) (zobacz rysunek).

rysunek

Udowodnij, że na czworokącie \(KNML\) można opisać okrąg.

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2025 r.