Zadanie - funkcje trygonometryczne
Treść zadania:
Dany jest trójkąt równoramienny o podstawie długości \(a\), ramionach długości \(b\), kątami wewnętrznymi przy podstawie trójkąta \(\beta\) oraz \(\alpha\) przy wierzchołku trójkąta z którego opada wysokość \(h\) na podstawę trójkąta. Zapisać podstawowe funkcje trygonometryczne dla katów: \(\beta, \frac{\alpha}{2}\).
Rozwiązanie zadania
Sporządzamy rysunek:
Wysokość dzieli trójkąt równoramienny na dwa trójkąty prostokątne. Możemy więc zgodnie z definicją funkcji trygonometrycznych określić poszczególne funkcje dla kąta \(\beta\):
\(\sin{\beta}=\frac{h}{b}\)
\(\cos{\beta}=\frac{\frac{a}{2}}{b}=\frac{a}{2b}\)
\(tg{\beta}=\frac{h}{\frac{a}{2}}=\frac{2h}{a}\)
\(ctg{\beta}=\frac{\frac{a}{2}}{h}=\frac{a}{2h}\)
\(*)\ sec\beta=\frac{b}{\frac{a}{2}}=\frac{2b}{a}\)
\(*)\ cosec\beta=\frac{b}{h}\)
*) funkcje secans i cosecans określono dodatkowo (ponadprogramowo)
Określamy poszczególne funkcje dla kąta \(\frac{\alpha}{2}\):
\(\sin{\frac{\alpha}{2}}= \frac{\frac{a}{2}}{b}=\frac{a}{2b}\)
\(\cos{\frac{\alpha}{2}}=\frac{h}{b}\)
\(tg{\frac{\alpha}{2}}=\frac{\frac{a}{2}}{h}=\frac{a}{2h}\)
\(ctg{\frac{\alpha}{2}}=\frac{h}{\frac{a}{2}}=\frac{2h}{a}\)
\(*)\ sec\frac{\alpha}{2}=\frac{b}{h}\)
\(*)\ cosec\frac{\alpha}{2}=\frac{b}{\frac{a}{2}}=\frac{2b}{a}\)
*) funkcje secans i cosecans określono dodatkowo (ponadprogramowo)
© medianauka.pl, 2011-03-24, ZAD-1256
Zadania podobne
Zadanie nr 1.
Dany jest trójkąt prostokątny równoramienny o przyprostokątnej długości \(a=\sqrt{2}\). Oblicz długość podstawy korzystając z funkcji trygonometrycznych.
Zadanie nr 2.
Obliczyć długość podstawy prostokąta, jeżeli przekątna o długości \(d=2\sqrt{3}\) tworzy z podstawą kąt \(\alpha=30°\).
Zadanie nr 3.
Obliczyć promień \(R\) okręgu opisanego na sześciokącie foremnym, jeżeli wiadomo, że długość promienia wpisanego w ten wielokąt \(r=2\).
Zadanie nr 4 — maturalne.
W okręgu o środku w punkcie \(S\) poprowadzono cięciwę \(AB\), która utworzyła z promieniem \(AS\) kąt o mierze 31° (zobacz rysunek). Promień tego okręgu ma długość 10. Odległość punktu \(S\) od cięciwy \(AB\) jest liczbą z przedziału
A. \(\langle \frac{9}{2};\frac{11}{2}\rangle\)
B. \(\langle \frac{11}{2};\frac{13}{2}\rangle\)
C. \(\langle \frac{13}{2};\frac{19}{2}\rangle\)
D. \(\langle \frac{19}{2};\frac{37}{2}\rangle\)
Zadanie nr 5 — maturalne.
Kąt \(\alpha\) jest ostry i \(tg{\alpha}=\frac{2}{3}\). Wtedy:
A. \(\sin{\alpha}=\frac{3\sqrt{13}}{26}\)
B. \(\sin{\alpha}=\frac{\sqrt{13}}{13}\)
C. \(\sin{\alpha}=\frac{2\sqrt{13}}{13}\)
D. \(\sin{\alpha}=\frac{3\sqrt{13}}{13}\)
Zadanie nr 6 — maturalne.
Kąt rozwarcia stożka ma miarę 120°, a tworzącą tego stożka ma długość 4. Objętość tego stożka jest równa
A. \(36\pi\)
B. \(18\pi\)
C. \(24\pi\)
D. \(8\pi\)
Zadanie nr 7 — maturalne.
Przekątna podstawy graniastosłupa prawidłowego czworokątnego jest dwa razy dłuższa od wysokości graniastosłupa. Graniastosłup przecięto płaszczyzną przechodzącą przez przekątną podstawy i jeden wierzchołek drugiej podstawy (patrz rysunek).
Płaszczyzna przekroju tworzy z podstawą graniastosłupa kąt α o mierze
A. 30°
B. 45°
C. 60°
D. 75°
Zadanie nr 8 — maturalne.
Tangens kąta \(\alpha\) zaznaczonego na rysunku jest równy:
A. \(-\frac{\sqrt{3}}{3}\)
B. \(-\frac{4}{5}\)
C. \(-1\)
D. \(-\frac{5}{4}\)
Zadanie nr 9 — maturalne.
Przyprostokątna \(LM\) trójkąta prostokątnego \(KLM\) ma długość \(3\), a przeciwprostokątna \(KL\) ma długość \(8\) (zobacz rysunek).
Wówczas miara α kąta ostrego LMK tego trójkąta spełnia warunek
- 27°<α≤30°
- 24°<α≤27°
- 21°<α≤24°
- 18°<α≤21°
Zadanie nr 10 — maturalne.
Sinus kąta ostrego \(\alpha\) jest równy \(\frac{4}{5}\). Wtedy
A. \(\cos{\alpha}=\frac{5}{6}\)
B. \(\cos{\alpha}=\frac{1}{5}\)
C. \(\cos{\alpha}=\frac{9}{25}\)
D. \(\cos{\alpha}=\frac{3}{5}\)
Zadanie nr 11 — maturalne.
Promień \(AS\) podstawy walca jest równy połowie wysokości \(OS\) tego walca. Sinus kąta \(OAS\) (zobacz rysunek) jest równy
A. \(\frac{\sqrt{5}}{2}\)
B. \(\frac{2\sqrt{5}}{5}\)
C. \(\frac{1}{2}\)
D. \(1\)
Zadanie nr 12 — maturalne.
Dany jest trójkąt prostokątny o kątach ostrych \(\alpha\) i \(\beta\) (zobacz rysunek).
Wyrażenie \(2\cos{\alpha}−\sin{\beta}\) jest równe
A. \(2\sin{\beta}\)
B. \(\cos{\alpha}\)
C. \(0\)
D. \(2\)