zadanie maturalne

Zadanie maturalne nr 12, matura 2016 (poziom podstawowy)

Treść zadania:

Funkcja f określona jest wzorem \(f(x)=\frac{2x^3}{x^6+1}\) dla każdej liczby rzeczywistej \(x\). Wtedy \(f(-\sqrt[3]{3})\) jest równa:

A. \(-\frac{\sqrt[3]{9}}{2}\)

B. \(-\frac{3}{5}\)

C. \(\frac{3}{5}\)

D. \(\frac{3}{5}\)


ksiązki Rozwiązanie zadania

Wygodnie będzie przedstawić pierwiastek jako potęgę:

\(a^{\frac{m}{n}}=(a^{\frac{1}{n}})^m=\sqrt[n]{a^m}\)

Mamy więc:

\(f(-\sqrt[3]{3})=f(-3^{\frac{1}{3}})=\frac{2\cdot (-3^{\frac{1}{3}})^3}{(-3^{\frac{1}{3}})^6+1}=\)

\(=\frac{2 \cdot (-3)}{3^2+1}=\frac{-6}{10}=-\frac{3}{5}\)

Skorzystaliśmy tu ze wzoru działań na potęgach.

\((a^n)^m=a^{m\cdot n}\)

Mianowicie:

\((3^{\frac{1}{3}})^3=3^{3\cdot \frac{1}{3}}=3^1=3\)

ksiązki Odpowiedź

Odpowiedź B

© medianauka.pl, 2016-11-01, ZAD-3232

AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Dana jest funkcja \(f(x)=\frac{x-3}{x^2+4}+x-1\)

Obliczyć:

a) \(f(1)\)

b) \(f(0)\)

c) \(f(-2)\)

d) \(f(\frac{1}{2})\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 2 — maturalne.

Na rysunku przedstawiono wykres funkcji \(f\).

zadanie maturalne 2015, zadanie 8

Zbiorem wartości funkcji \(f\) jest

A. \((-2,2)\)

B. \([-2,2)\)

C. \([-2,2]\)

D. \((-2,2]\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 3 — maturalne.

Funkcja kwadratowa określona jest wzorem \(f(x)=x^2+x+c\). Jeżeli \(f(3)=4\), to:

A. \(f(1)=-6\)

B. \(f(1)=0\)

C. \(f(1)=6\)

D. \(f(1)=18\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 4 — maturalne.

Do wykresu funkcji, określonej dla wszystkich liczb rzeczywistych wzorem \(y=-2^{x-2}\), należy punkt:

A. \(A=(1,-2)\)

B. \(B=(2,-1)\)

C. \(C=(1,\frac{1}{2})\)

D. \(D=(4,4)\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 5 — maturalne.

Punkt \(A=(\frac{1}{3},-1)\) należy do wykresu funkcji liniowej \(f\) określonej wzorem \(f(x)=3x+b\). Wynika stąd, że

A. \(b=2\)

B. \(b=1\)

C. \(b=-1\)

D. \(b=-2\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 6 — maturalne.

Funkcja \(f\) jest określona wzorem \(f(x)=\frac{x^2}{(2x-2)}\) dla każdej liczby rzeczywistej \(x \neq 1\). Wtedy dla argumentu \(x=\sqrt{3}-1\) wartość funkcji \(f\) jest równa

A. \(\frac{1}{\sqrt{3}-1)}\)

B. \(-1\)

C. \(1\)

D. \(\frac{1}{(\sqrt{3}-2)}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 7 — maturalne.

Do wykresu funkcji \(f\) określonej dla każdej liczby rzeczywistej \(x\) wzorem \(f(x)=3^x-2\) należy punkt o współrzędnych

A. \((-1,-5)\)

B. \((0,-2)\)

C. \((0,-1)\)

D. \((2,4)\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 8 — maturalne.

Funkcja liniowa \(f\) przyjmuje wartość \(2\) dla argumentu \(0\), a ponadto \(f(4)-f(2)=6\). Wyznacz wzór funkcji \(f\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 9 — maturalne.

Na rysunku przedstawiono wykres funkcji \(f\).

Rysunek, matura 2022, zadanie 8

Iloczyn \(f(-3)\cdot f(0)\cdot f(4)\) jest równy

A. (-12)

B. (-8)

C. 0

D. 16

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 10 — maturalne.

Miejscem zerowym funkcji liniowej \(f\) określonej wzorem \(f(x)=\frac{1}{3}(x+3)+5\) jest liczba

A. (-3)

B. \(\frac{9}{2}\)

C. 5

D. 12

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2025 r.