zadanie maturalne

Zadanie maturalne nr 27, matura 2016 (poziom podstawowy)

Treść zadania:

Rozwiązać nierówność \(2x^2-4x>3x^2-6x\).


ksiązki Rozwiązanie zadania

Mamy do czynienia z nierównością kwadratową. W takim przypadku przenosimy wszystkie wyrazy na jedną stronę nierówności, porządkujemy i redukujemy je.

Mamy więc:

\(2x^2-4x>3x^2-6x\)

\(2x^2-3x^2-4x+6x>0\)

\(-x^2+2x>0 /\cdot(-1)\)

\(x^2-2x<0\)

\(x(x-2)<0\)

Otrzymaliśmy po lewej stronie postać iloczynową trójmianu kwadratowego, z którego możemy odczytać, że \(a>0\) (ramiona paraboli są skierowane w górę), a miejscami zerowymi są liczby \(0\) i \(2\).

Możemy naszkicować na osi parabolę i odczytać przedział (rozwiązanie zadania), dla którego wartości są mniejsze od zera.

Ilustracja do zadania

A zatem rozwiązaniem jest przedział otwarty \((0;2)\).

ksiązki Odpowiedź

\(x\in (0;2)\)

© medianauka.pl, 2016-11-01, ZAD-3253

AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Dla jakiej wartości parametru \(x\) prawdziwa jest równość \(\sqrt{(x^2-2x+1)^2}=x^2-2x+1\)?

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Wyznaczyć dziedzinę funkcji \(y=\log(5x^2-3x+1)\).

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Rozwiązać nierówność \(2x^2-|x+1|\leq -1\).

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Rozwiązać nierówność:

a) \(x^2+2x-3\geq 0\)

b) \(-x^2+\frac{3}{4}x-\frac{1}{8}> 0\)

c) \(-x^2+2\leq 0\)

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Rozwiązać nierówność:

a) \(\sqrt{3}x^2+\sqrt{2}x+1< 0\)

b) \(-x^2-2x-5\geq 0\)

Pokaż rozwiązanie zadania.

Zadanie nr 6.

Rozwiązać nierówność:

a) \(x^2+8x+16> 0\)

b) \(-x^2+2\sqrt{2}x-2\geq 0\)

Pokaż rozwiązanie zadania.

Zadanie nr 7.

Dla jakich wartości parametru \(m\) nierówność \(x^2-2x-m+1\leq 0\) ma jedno rozwiązanie \(x=1\)?

Pokaż rozwiązanie zadania.

Zadanie nr 8.

Dla jakich wartości parametru \(m\) zbiorem rozwiązań nierówności \(x^2+mx-1+m> 0\) jest:

a) zbiór liczb rzeczywistych?

b) zbiór pusty?

Pokaż rozwiązanie zadania.

Zadanie nr 9.

Rozwiązać nierówność \(\frac{x}{x+1}\geq 2\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 10 — maturalne.

Rozwiąż nierówność \(2x^2-4x>(x+3)(x-2)\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 11 — maturalne.

Rozwiąż nierówność \(2x^2−3x>5\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 12 — maturalne.

Rozwiąż nierówność \(3x^2−16x+16>0\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 13 — maturalne.

Rozwiąż nierówność \(2(x −1)(x + 3)>x −1\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 14 — maturalne.

Rozwiąż nierówność \(x^2-5x ≤ 14\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 15 — maturalne.

Rozwiąż nierówność \(3x^2-3x-9\geq 7\).

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2025 r.