zadanie maturalne

Zadanie maturalne nr 2, matura 2015 (poziom podstawowy)

Treść zadania:

Dane są liczby \(a=-\frac{1}{27},\ b=\log_{\frac{1}{4}}{64},\ c=\log_{\frac{1}{3}}{27}\). Iloczyn \(abc\) jest równy:

A. \(-9\)

B. \(-\frac{1}{3}\)

C. \(\frac{1}{3}\)

D. \(3\)


ksiązki Rozwiązanie zadania

Korzystamy bezpośrednio z definicji logarytmu:

\(\log_{a}x=y\Leftrightarrow a^y=x\)>

Pytamy więc, do jakiej potęgi musimy podnieść liczbę w podstawie, aby otrzymać liczbę logarytmowaną:

\(b=\log_{\frac{1}{4}}{64}=-3,\ bo \ (\frac{1}{4})^{-3}=64\)\

\(c=\log_{\frac{1}{3}}{27}=-3,\ bo \ (\frac{1}{3})^{-3}=27\)

Obliczamy iloczyn wszystkich liczb:

\(abc=-\frac{1}{27}\cdot (-3)\cdot (-3)=-\frac{1}{3}\)

ksiązki Odpowiedź

Odpowiedź B

© medianauka.pl, 2016-12-04, ZAD-3300

AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Przedstaw liczbę \(0,2\) jako sumę trzech logarytmów o różnych podstawach.

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Oblicz:

a)\log_{3}{\frac{1}{3}} \\ b) \log_{\sqrt{2}}{2} \\ c) \log_{\frac{1}{3}}{9} \\ d) \log_{5}{5} \\ e) \log_{5}{1} \\ f) \log_{2}{\sqrt{2}} \\ g) \log_{3}{\sqrt[3]{3}} \\ h) \log_{2}{2\sqrt[3]{2}} \\ i) \log_{2}{256}

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 3 — maturalne.

Skala Richtera służy do określania siły trzęsień ziemi. Siła ta opisana jest wzorem \(R=\log{\frac{A}{A_0}}\), gdzie \(A\) oznacza amplitudę trzęsienia wyrażoną w centymetrach, \(A_0=10^{-4}\ cm\) jest stałą, nazywaną amplitudą wzorcową. 5 maja 2014 roku w Tajlandii miało miejsce trzęsienie ziemi o sile \(6,2\) w skali Richtera. Oblicz amplitudę trzęsienia ziemi w Tajlandii i rozstrzygnij, czy jest ona większa, czy – mniejsza od \(100\ cm\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 4 — maturalne.

Liczba \(\log_{\sqrt{2}}2\) jest równa

A. \(2\)

B. \(4\)

C. \(\sqrt{2}\)

D. \(\frac{1}{2}\)

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2025 r.