Zadanie maturalne nr 11, matura 2015 (poziom rozszerzony)
Treść zadania:
W pierwszej urnie umieszczono 3 kule białe i 5 kul czarnych, a w drugiej urnie 7 kul białych i 2 kule czarne. Losujemy jedną kulę z pierwszej urny, przekładamy ją do urny drugiej i dodatkowo dokładamy do urny drugiej jeszcze dwie kule tego samego koloru, co wylosowana kula. Następnie losujemy dwie kule z urny drugiej. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że obie kule wylosowane z drugiej urny będą białe.
Rozwiązanie zadania
Nasze doświadczenie losowe jest wieloetapowe, a zdarzenia elementarne tworzą dość skomplikowany zbiór. Możemy przy obliczaniu prawdopodobieństwa posłużyć się drzewem stochastycznym.
W pierwszym losowaniu w pierwszej urnie mamy 8 kul, z czego 3 są białe. Losujemy jedną kulę. Prawdopodobieństwo wylosowania kuli białej wynosi 3/8, natomiast czarnej 5/8. W urnie drugiej mamy 7 kul białych i 2 czarne, co daje razem 9 kul. Dokładamy jedną kulę wylosowaną i dwie dodatkowe tego samego koloru. W sumie w urnie drugiej znajduje się teraz 12 kul. Ich kolor zależny od tego, jaką kule wylosowaliśmy wcześniej. Losujemy teraz pierwszą kulę z drugiej urny. W przypadku, gdy wcześniej wylosowaliśmy kulę białą, mamy teraz w urnie drugiej 10 kul białych i 2 czarne. Prawdopodobieństwo wylosowania kuli białej wynosi 10/12. Losujemy kulę drugą. W urnie zostało już 11 kul, z czego tylko 9 białych. Prawdopodobieństwo tego zdarzenia wynosi teraz 9/11.
Podobne rozumowanie przeprowadzamy w przypadku, gdy z pierwszej urny wyjęto kulę czarną. Mamy wówczas 12 kul, z czego tylko 7 białych (prawdopodobieństwo wylosowania kuli białej wynosi teraz 7/12), po czym przy wyjmowaniu kuli drugiej - 6/11.
Obliczamy prawdopodobieństwo zdarzenia, że obie wylosowane kule z urny drugiej są białe.
\(P(A)=\frac{3}{8}\cdot \frac{10}{12}\cdot \frac{9}{11}\cdot + \frac{5}{8}\cdot \frac{7}{12}\cdot \frac{6}{11}=\frac{45}{176}+\frac{35}{176}=\frac{80}{176}=\frac{5}{11}\)
Odpowiedź
© medianauka.pl, 2017-01-10, ZAD-3369
Zadania podobne
Zadanie nr 1.
Z urny zawierającej 8 kul czarnych i 4 białych losujemy kolejno bez zwracania dwie kule. Jakie jest prawdopodobieństwo wylosowania:
a) dwóch takich samych kul.
b) dwóch różnych kul.
c) kuli białej, a potem czarnej.
Zadanie nr 2.
Jakie jest prawdopodobieństwo, że pośród wylosowanych trzech osób z klasy liczącej 25 osób znajduje się jedna dziewczyna i dwóch chłopców? W klasie jest 12 dziewcząt.
Zadanie nr 3.
Dwie firmy wyprodukowały łącznie 5000 butów, przy czym firma pierwsza wyprodukowała ich 2000. Wśród butów wyprodukowanych przez pierwszą firmę jest 80% sandałów, a przez drugą firmę 65% butów to sandały. Losujemy jedną parę butów. Jakie jest prawdopodobieństwo wylosowania sandałów?
Zadanie nr 4 — maturalne.
W dwóch pudełkach umieszczono po pięć kul, przy czym w pierwszym pudełku: 2 kule białe i 3 kule czerwone, a w drugim pudełku: 1 kulę białą i 4 kule czerwone. Z pierwszego pudełka losujemy jedną kulę i bez oglądania wkładamy ją do drugiego pudełka. Następnie losujemy jedną kulę z drugiego pudełka. Oblicz prawdopodobieństwo wylosowania kuli białej z drugiego pudełka.
Zadanie nr 5 — maturalne.
Rzucamy dwa razy symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego oczka do sześciu oczek. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że co najmniej jeden raz wypadnie ścianka z pięcioma oczkami.
Zadanie nr 6 — maturalne.
Mamy dwie urny. W pierwszej są 3 kule białe i 7 kul czarnych, w drugiej jest jedna kula biała i 9 kul czarnych. Rzucamy symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek, od jednego oczka do sześciu oczek. Jeśli w wyniku rzutu otrzymamy ściankę z jednym oczkiem, to losujemy jedną kulę z pierwszej urny, w przeciwnym przypadku — losujemy jedną kulę z drugiej urny. Wtedy prawdopodobieństwo wylosowania kuli białej jest równe
A. 2/15
B. 1/5
C. 4/5
D. 13/5
Zadanie nr 7 — maturalne.
Dane są dwie urny z kulami. W każdej z urn jest siedem kul. W pierwszej urnie są jedna kula biała i sześć kul czarnych, w drugiej urnie są cztery kule białe i trzy kule czarne. Rzucamy jeden raz symetryczną monetą. Jeżeli wypadnie reszka, to losujemy jedną kulę z pierwszej urny, w przeciwnym przypadku – jedną kulę z drugiej urny. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy kulę białą w tym doświadczeniu, jest równe
A. \(\frac{5}{14}\)
B. \(\frac{9}{14}\)
C. \(\frac{5}{7}\)
D. \(\frac{6}{7}\)
Zadanie nr 8 — maturalne.
Tomek i Romek postanowili rozegrać między sobą pięć partii szachów. Prawdopodobieństwo wygrania pojedynczej partii przez Tomka jest równe \(\frac{1}{4}\). Oblicz prawdopodobieństwo wygrania przez Tomka co najmniej czterech z pięciu partii. Wynik podaj w postaci ułamka zwykłego nieskracalnego. Zapisz obliczenia.