zadanie maturalne

Zadanie maturalne nr 1, matura 2014

Treść zadania:

Na rysunku przedstawiono geometryczną interpretację jednego z niżej zapisanych układów równań.

wzór

Wskaż ten układ:

A. \(\begin{cases}y=x+1\\y=-2x+4\end{cases}\)

B. \(\begin{cases}y=x-1\\y=2x+4\end{cases}"\)

C. \(\begin{cases}y=x-1\\y=-2x+4\end{cases}"\)

D. \(\begin{cases}y=x+1\\y=2x+4\end{cases}\)


ksiązki Rozwiązanie zadania

Ogólna postać równania prostej:

\(y=ax+b\)

Z wykresu możemy odczytać po dwa 2 punkty, przez które przechodzą proste:

Są to:

\(A=(1,2)\) i \(B=(0,1)\)

Podstawiamy więc współrzędne tych punktów do równania prostej i otrzymujemy układ równań, z którego otrzymamy współczynniki \(a\) i \(b\).

\(\begin{cases}2=a\cdot 1+b\\1=a\cdot0+b\end{cases}\)

\(\begin{cases}2=a+b\\1=b\end{cases}\)

\(\begin{cases}a=1\\b=1\end{cases}\)

Otrzymujemy równanie jednej z prostych:

\(y=x+1\)

Z drugą prostą postępujemy analogicznie:

\(A=(1,2),\ C=(2,0)\)

\(\begin{cases}2=a\cdot 1+b\\0=2a+b\end{cases}\)

\(\begin{cases}a=-2\\b=4\end{cases}\)

\(y=-2x+4\)

ksiązki Odpowiedź

Odpowiedź A

© medianauka.pl, 2017-01-31, ZAD-3424

AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Znaleźć równanie paraboli, której fragment przedstawiono na rysunku:

parabola

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Znaleźć współrzędne punktu przecięcia się prostych o równaniach \(y=3x-5\) oraz \(y=-5x+3\)

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Rozwiązać układ równań metodą podstawiania:

a) \(\begin{cases} 3x-2y=-4 \\ x+3y=-5\end{cases}\)

b) \(\begin{cases} \sqrt{3}x+4y=1\\ x+2\sqrt{3}y=\sqrt{3}\end{cases}\)

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Rozwiązać układ równań metodą podstawiania:

a) \(\begin{cases} y-3x=2\\ -2y+6x=1 \end{cases}\)

b) \(\begin{cases} 2x+\frac{1}{2}y=\frac{1}{3}\\ -12x-3y=-2 \end{cases}\)

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Rozwiązać układ równań metodą przeciwnych współczynników:

a) \(\begin{cases} \frac{1}{2}x-2=y\\ \frac{1}{3}x+3=\frac{1}{4}y \end{cases}\)

b) \(\begin{cases} 5x+5y=-7\\ -3x-2y=4 \end{cases}\)

Pokaż rozwiązanie zadania.

Zadanie nr 6.

Rozwiązać układ równań metodą przeciwnych współczynników:

a) \(\begin{cases} \sqrt{2}x-\sqrt{6}y=\sqrt{5}\\ 2x+4y=\sqrt{10} \end{cases}\)

b) \(\begin{cases} 2x+y=-\frac{1}{2}\\ -4x-2y=1 \end{cases}\)

c) \(\begin{cases} 3x-y=5\\-6x+2y=-1 \end{cases}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 7 — maturalne.

Proste o równaniach \(2x-3y=4\) i \(5x-6y=7\) przecinają się w punkcie \(P\). Stąd wynika, że:

A. \(P=(1,2)\)

B. \(P=(-1,2)\)

C. \(P=(-1,-2)\)

D. \(P=(1,-2)\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 8 — maturalne.

Proste o równaniach \(2x-3y=4\) i \(5x-6y=7\) przecinają się w punkcie \(P\). Stąd wynika, że:

A. \(P=(1,2)\)

B. \(P=(-1,2)\)

C. \(P=(-1,-2)\)

D. \(P=(1,-2)\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 9 — maturalne.

Wyznacz wszystkie wartości parametru \(a\), dla których wykresy funkcji \(f\) i \(g\), określonych wzorami \(f(x)=x-2\) oraz \(g(x)=5-ax\), przecinają się w punkcie o obu współrzędnych dodatnich.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 10 — maturalne.

Układ równań

\(\begin{cases}x-y=3\\ 2x+0,5y=4 \end{cases}\)

opisuje w układzie współrzędnych na płaszczyźnie:

A. zbiór pusty.

B. dokładnie jeden punkt.

C. dokładnie dwa różne punkty.

D. zbiór nieskończony.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 11 — maturalne.

W układzie współrzędnych są dane punkty \(A=(-43,-12)\), \(B=(50,19)\). Prosta AB przecina oś \(Ox\) w punkcie \(P\). Oblicz pierwszą współrzędną punktu \(P\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 12 — maturalne.

Para liczb \(x=2\) i \(y=2\) jest rozwiązaniem układu równań

\(\begin{cases} ax+y=5\\-2x+3y=2a\end{cases}\)

dla:

A. \(a=-1\)

B. \(a=1\)

C. \(a=-2\)

D. \(a=2\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 13 — maturalne.

Na rysunku obok przedstawiono geometryczną interpretację jednego z niżej zapisanych układów równań. Wskaż ten układ, którego geometryczną interpretację przedstawiono na rysunku.

Zadanie 8, matura 2021, matematyka

A. \(\begin{cases}y=x+1\\y=-2x+4\end{cases}\)

B. \(\begin{cases}y=x-1\\y=2x+4\end{cases}\)

C. \(\begin{cases}y=x-1\\y=2x+4\end{cases}\)

D. \(\begin{cases}y=x+1\\y=2x+4\end{cases}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 14 — maturalne.

Prosta przechodząca przez punkty \(A=(8, −6)\) i \(B=(5, 15)\) jest styczna do okręgu o środku w punkcie \(O=(0, 0)\). Oblicz promień tego okręgu i współrzędne punktu styczności tego okręgu z prostą AB.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 15 — maturalne.

Rozwiązaniem układu równań \(\begin{cases} 11x-11y=1\\22x+22y=-1\end{cases}\) jest para liczb \(x=x_0, y=y_0\). Wtedy

A. \(x_0>0\) i \(y_0>0\)

B. \(x_0>0\) i \(y_0<0\)

C. \(x_0<0\) i \(y_0>0\)

D. \(x_0<0\) i \(y_0<0\)

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2025 r.