Zadanie - Działania na potęgach - Oblicz wartość wyrażenia

Treść zadania:

Oblicz:

\(3^2\cdot 9^8\cdot (\frac{1}{3})^{-3}\cdot 27^{-5}\cdot 3^{\frac{1}{3}}\cdot 9^{\frac{1}{3}}\)


książka Rozwiązanie zadania

Aby wykonywać działania na potęgach trzeba najpierw uzyskać, jeśli to możliwe, jednakowe podstawy potęg. W tym przypadku wszystkie liczby zaznaczone różnymi kolorami można przedstawić jako potęgę liczby 3:

\(3^2\cdot 9^8\cdot (\frac{1}{3})^{-3}\cdot 27^{-5}\cdot 3^{\frac{1}{3}}\cdot 9^{\frac{1}{3}}=3^2\cdot (3^2)^8\cdot (3^{-1})^{-3}\cdot (3^3)^{-5}\cdot 3^{\frac{1}{3}}\cdot (3^2)^{\frac{1}{3}}\)

Zastosowaliśmy tutaj wzór:

\(a^{-n}=\frac{1}{a^n}\)

Teraz zastosujemy wzór

\((a^{m})^n=a^{m \cdot n}\)

Zgodnie z nim otrzymujemy następujące wyrażenie:

\(3^2\cdot (3^2)^8\cdot (3^{-1})^{-3}\cdot (3^3)^{-5}\cdot 3^{\frac{1}{3}}\cdot (3^2)^{\frac{1}{3}}= 3^2\cdot 3^{16}\cdot 3^3\cdot 3^{-15}\cdot 3^{\frac{1}{3}}\cdot 3^{\frac{2}{3}}\)

Uzyskaliśmy iloczyn potęg o takich samych podstawach. Możemy teraz zastosować następujący wzór:

\(a^m\cdot a^n=a^{m+n}\)

Zgodnie z nim otrzymujemy wynik:

\(3^2\cdot 3^{16}\cdot 3^3\cdot 3^{-15}\cdot 3^{\frac{1}{3}}\cdot 3^{\frac{2}{3}}=3^{2+16+3-15+\frac{1}{3}+\frac{2}{3}}=3^7=2187\)

ksiażka Odpowiedź

\(3^2\cdot 9^8\cdot (\frac{1}{3})^{-3}\cdot 27^{-5}\cdot 3^{\frac{1}{3}}\cdot 9^{\frac{1}{3}}=2187\)

© medianauka.pl, 2009-11-14, ZAD-380

AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Uprościć wyrażenie:

\(\Large \frac{6^{\frac{4}{3}}\cdot (\frac{3}{8})^{0,25}\cdot 2^{-0,(3)}\cdot (\frac{3}{2})^{\frac{3}{5}}}{2^{\frac{3}{20}}\cdot 3^{\frac{11}{60}}}\)

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Uprościć wyrażenie:

\(\Large \frac{(x^{\frac{1}{4}}+1)(x^{-\frac{1}{4}}-1)}{3x^{\frac{1}{4}}}-\frac{3}{2x^{\frac{3}{4}}}\)

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Uprościć wyrażenie:

\(W=[(a^3-x^2)^{\frac{1}{2}}-1][(a^3-x^2)^{\frac{1}{2}}+1]-a^3+\\+x^2+(a^3-x^2)^{-\frac{1}{2}}+a^{\frac{1}{2}}(a^2-\frac{x^2}{a})^{-\frac{1}{2}}+1\)

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Oblicz wartość wyrażenia:

\([(\frac{1}{5})^{-\frac{1}{2}}]^4+5\cdot 5^{-2}-(\frac{1}{5^3})^{-1}\)

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Oblicz wartość wyrażenia, korzystając z własności potęg:

\((5^{-\frac{1}{2}})^{5^{\frac{1}{3}}\cdot 25^{-\frac{2}{3}}}\)

Pokaż rozwiązanie zadania.

Zadanie nr 6.

Korzystając z własności działań na pierwiastkach lub potęgach, oblicz:

\(\sqrt{2}\cdot \sqrt[3]{2}\)

Pokaż rozwiązanie zadania.

Zadanie nr 7.

Korzystając z własności działań na pierwiastkach lub potęgach oblicz: \(\sqrt{2}\cdot \sqrt[4]{4}:\sqrt[5]{16}\).

Pokaż rozwiązanie zadania.

Zadanie nr 8.

Oblicz wartość wyrażenia: \(\sqrt{\sqrt[5]{\sqrt[4]{2^{48}}}}\)

Pokaż rozwiązanie zadania.

Zadanie nr 9.

Sprawdzić, czy liczby \(1, \sqrt{2}\) są pierwiastkami wielomianu

\(W(x)=\sqrt{2}x^5-2x^4-\sqrt{2}x^3+3x^2-2\sqrt{2}x+2\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 10 — maturalne.

Funkcja f określona jest wzorem \(f(x)=\frac{2x^3}{x^6+1}\) dla każdej liczby rzeczywistej \(x\). Wtedy \(f(-\sqrt[3]{3})\) jest równa:

A. \(-\frac{\sqrt[3]{9}}{2}\)

B. \(-\frac{3}{5}\)

C. \(\frac{3}{5}\)

D. \(\frac{3}{5}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 11 — maturalne.

Funkcja \(f\) jest określona wzorem \(f(x)=4^{-x}+1\) dla każdej liczby rzeczywistej \(x\). Liczba \(f(\frac{1}{2})\) jest równa.

A. \(\frac{1}{2}\)

B. \(\frac{3}{2}\)

C. \(3\)

D. \(17\)

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2023 r.