Zadanie - działania na pierwiastkach i potęgach

Treść zadania:

Oblicz wartość wyrażenia: \(\sqrt{\sqrt[5]{\sqrt[4]{2^{48}}}}\)


Rozwiązanie zadania

I sposób

Skorzystamy z własności działań na pierwiastkach:

\(\sqrt[m]{\sqrt[n]{a}}=\sqrt[m\cdot n]{a},\ a\geq 0\)

Zgodnie z nim możemy zapisać nasze wyrażenie w innej postaci:

\(\sqrt{\sqrt[5]{\sqrt[4]{2^{48}}}}=\sqrt[2\cdot 5\cdot 4]{2^{48}}=\sqrt[40]{2^{48}}\)

Skorzystamy teraz z własności działań na potęgach oraz działań na pierwiastkach:

\(a^m\cdot a^n=a^{m+n}\)
\(\sqrt[n]{a\cdot b}=\sqrt[n]{a}\cdot \sqrt[n]{b}\)

\(\sqrt[40]{2^{48}}=\sqrt[40]{2^{40+8}}=\sqrt[40]{2^{40}\cdot 2^8}=\sqrt[40]{2^{40}}\cdot \sqrt[40]{2^8}\)

Wynik można jeszcze bardziej uprościć, korzystając ze wzorów:

\(\sqrt[n]{a^n}=a,\ a\geq 0\)
\(\sqrt[m]{\sqrt[n]{a}}=\sqrt[m\cdot n]{a},\ a\geq 0\)

\(\sqrt[40]{2^{40}}\cdot \sqrt[40]{2^8}=2\cdot \sqrt[5\cdot 8]{2^8}=2\sqrt[5]{\sqrt[8]{2^8}}=2\sqrt[5]{2}\)

II sposób

To samo zadanie można rozwiązać inaczej, gdy skorzystamy z własności działań na potęgach. Zaczniemy od zamiany pierwiastków na potęgi zgodnie ze wzorem:

\(\sqrt[n]{a}=a^{\frac{1}{n}},\ a\geq 0\)

\(\sqrt{\sqrt[5]{\sqrt[4]{2^{48}}}}=\lbrace[(2^{48})^{\frac{1}{4}}]^{\frac{1}{5}}\rbrace^{\frac{1}{2}}=2^{48\cdot \frac{1}{4} \cdot \frac{1}{5}\cdot \frac{1}{2}}=2^{\frac{48}{40}}=2^{1\frac{1}{5}}\)

W kolejnym kroku skorzystaliśmy tutaj ze wzoru:

\((a^n)^m=a^{m\cdot n}\)

Teraz zastosujemy wzór:

\(a^m\cdot a^n=a^{m+n}\)

\(2^{1\frac{1}{5}}=2^{1+\frac{1}{5}}=2^{1}\cdot 2^{\frac{1}{5}}=2\sqrt[5]{2}\)

Odpowiedź

\(\sqrt{\sqrt[5]{\sqrt[4]{2^{48}}}}=2\sqrt[5]{2}\)

© medianauka.pl, 2009-11-23, ZAD-393


AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Oblicz wartość wyrażenia \(\sqrt[3]{\frac{216}{1331}}\)

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Oblicz \(\sqrt{\frac{a^2}{b^2}}\).

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Oblicz wartość pierwiastka \(\sqrt{\frac{9a^2b^4}{4}}\).

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Oblicz wartość pierwiastka dla \(b>0\): \(\sqrt{\frac{a^6}{b^2}}\).

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Korzystając z własności działań na pierwiastkach lub potęgach, oblicz:

\(\sqrt{2}\cdot \sqrt[3]{2}\)

Pokaż rozwiązanie zadania.

Zadanie nr 6.

Korzystając z własności działań na pierwiastkach lub potęgach oblicz: \(\sqrt{2}\cdot \sqrt[4]{4}:\sqrt[5]{16}\).

Pokaż rozwiązanie zadania.

Zadanie nr 7.

Dla jakiej wartości parametru \(x\) prawdziwa jest równość \(\sqrt{(x^2-2x+1)^2}=x^2-2x+1\)?

Pokaż rozwiązanie zadania.

Zadanie nr 8.

Uprościć wyrażenie \(W=\sqrt{(a-1)^2}+\sqrt{(a+1)^2}\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 9 — maturalne.

Liczba \(\sqrt[3]{\frac{7}{3}}\cdot \sqrt[3]{\frac{81}{56}}\) jest równa:

  1. \(\frac{\sqrt{3}}{2}\)
  2. \(\frac{3}{2\sqrt[3]{21}}\)
  3. \(\frac{3}{2}\)
  4. \(\frac{9}{4}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 10 — maturalne.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba \(\sqrt[3]{-\frac{27}{16}}\cdot\sqrt[3]{2}\) jest równa

A. \((-\frac{3}{2})\)

B. \(\frac{3}{2}\)

C. \(\frac{2}{3}\)

D. \((-\frac{2}{3})\)

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2025 r.