Zadanie - równanie kwadratowe z parametrem

Treść zadania:

Dla jakiej wartości parametru \(m\) równanie \(mx^2+4mx-m+1=0\) ma jedno rozwiązanie? Znajdź to rozwiązanie?


ksiązki Rozwiązanie zadania

Przy \(x^2\) mamy parametr. Rozpatrzmy dwa przypadki:

Przypadek 1

Gdy \(m=0\) mamy:

\(0\cdot x^2+4\cdot 0\cdot x-0+1=0\)

\(-1=0\)

Otrzymaliśmy sprzeczność. Zatem równanie nie ma rozwiązań.

Przypadek 2

Gdy \(m\neq 0\) mamy równanie kwadratowe. Obliczamy wyróżnik trójmianu kwadratowego:

\(a=m, b=4m, c=-m+1=1-m\)

\(\Delta=b^2-4ac\)

\(\Delta=(4m)^2-4\cdot m\cdot (1-m)=16m^2-4m(1-m)=\)

\(=16m^2-4m+4m^2=20m^2-4m\)

Równanie kwadratowe ma jedno rozwiązanie \(x_{0}=-\frac{b}{2a}\) gdy \(\Delta=0\):

\(20m^2-4m=0/:20\)

\(m^2-\frac{4}{20}m=0\)

\(m^2-\frac{1}{5}m=0\)

\(m(m-\frac{1}{5})=0\)

Powyższe równanie ma dwa pierwiastki: \(0\) i \(\frac{1}{5}\). Liczba \(0\) nie spełnia warunków zadania (patrz przypadek pierwszy). Liczba \(\frac{1}{5}\) jest wartością parametru \(m\), dla którego równanie ma jedno rozwiązanie. Znajdźmy je:

\(x_0=-\frac{b}{2a}=-\frac{4a}{2a}=-2\)

ksiązki Odpowiedź

Dla \(m\frac{1}{5}\) równanie \(mx^2+4mx-m+1=0\) ma jedno rozwiązanie \(x=-2\).

© medianauka.pl, 2009-12-27, ZAD-449

AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Dla jakich wartości parametru \(m\) suma odwrotności pierwiastków równania \(x^2-2(m+1)x+(m^2+3m-18)=0\) ma wartość ujemną?

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Rozwiązać równanie \(\frac{3}{x-a}=\frac{x+a}{1-x}\) w zależności od parametru \(a\).

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Rozwiązać równanie \(\frac{2}{x-a}=\frac{x-a}{x}\) w zależności od parametru \(a\).

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Określić liczbę rozwiązań równania \((a+3)x^2-(a+1)x+1=0\) w zależności od parametru \(a\).

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Dla jakiej wartości parametru \(m\) równanie \(m^2x^2-6x+9=0\) ma jedno rozwiązanie?

Pokaż rozwiązanie zadania.

Zadanie nr 6.

Znaleźć taką wartość parametru m, dla której suma kwadratów pierwiastków równania \(x^2-mx-m-1=0\) jest najmniejsza.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 7 — maturalne.

Dany jest trójmian kwadratowy \(f(x)=x^2+2(m+1)x+6m+1\). Wyznacz wszystkie rzeczywiste wartości parametru m, dla których ten trójmian ma dwa różne pierwiastki \(x_1\), \(x_2\) tego samego znaku, spełniające warunek \(|x_1-x_2|<3\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 8 — maturalne.

Dany jest trójmian kwadratowy \(f(x)=(m+1)x^2+2(m-2)x-m+4\). Wyznacz wszystkie wartości parametru \(m\), dla których trójmian \(f\) ma dwa różne pierwiastki rzeczywiste \(x_1, x_2\), spełniające warunek \(x_1^2-x_2^2=x_1^4-x_2^4\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 9 — maturalne.

Wyznacz wszystkie wartości parametru \(m\), dla których trójmian kwadratowy \(4x^2-2(m+1)x+m\) ma dwa różne pierwiastki rzeczywiste \(x_1\) oraz \(x_2\), spełniające warunki: \(x_1 \neq 0, x_2\neq 0\) oraz \(x_1+x_2\leq \frac{1}{x_1}+\frac{1}{x_2}\).

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2025 r.