Zadanie - wykres funkcji z wartością bezwzględną y=1/|x+2|-3

Treść zadania:

Sporządzić wykres funkcji \(f(x)=\frac{1}{|x+2|}-3\).


Rozwiązanie zadania

Skorzystamy z definicji wartości bezwzględnej:

\(|x|=\begin{cases} x \ dla \ x\geq 0 \\ -x \ dla \ x< 0 \end{cases}\)

Mamy więc dwa przypadki:

Przypadek 1

Dla \(x+2>0, x>-2\) (\(x\) nie może być równe liczbie \(-2\) ze względu na dziedzinę funkcji) możemy opuścić wartość bezwzględną.

\(f(x)=\frac{1}{|x+2|}-3\)

\(f(x)=\frac{1}{x+2}-3\)

Otrzymaliśmy funkcję homograficzną. Jej wykresem jest hiperbola. Aby naszkicować jej wykres skorzystamy dodatkowo z wiedzy na temat przesuwania wykresu funkcji w układzie współrzędnych o zadany wektor.

Wykres funkcji \(y=f(x)\) przesunięty w układzie współrzędnych o wektor \([p,q]\) ma wzór:

\(y-q=f(x-p)\)

Jeżeli \(f(x)=\frac{1}{x}\), to \(f(x-p)=\frac{1}{x-p}\). Zapiszemy naszą funkcję w następującej postaci:

\(y-q=f(x-p)\)

\(y-(-3)=\frac{1}{x-(-2)}\)

\(p=-2, q=-3\)

Wystarczy więc przesunąć wykres funkcji \(y=\frac{1}{x}\) w układzie współrzędnych o wektor \([-2,-3]\). Pamiętać też należy, że w omawianym przypadku, zgodnie z założeniem, wykres sporządzamy dla argumentów funkcji \(x>-2\).

Poniżej tabelka zmienności funkcji dla funkcji elementarnej \(y=\frac{1}{x}\).

\(x\)\(\frac{1}{2}\)\(1\)\(2\)\(f(x)\)\(2\)\(1\)\(\frac{1}{2}\)

Sporządzamy więc wykres powyższej funkcji:

Przypadek 2

Dla \(x+2<0, x<-2\) możemy opuścić wartość bezwzględną, pamiętając o zmianie znaku na przeciwny wyrażenia znajdującego się pod wartością bezwzględną.

\(f(x)=\frac{1}{|x+2|}-3\)

\(f(x)=\frac{1}{-(x+2)}-3\)

\(f(x)=-\frac{1}{x+2}-3\)

Aby naszkicować wykres tej funkcji homograficznej, również skorzystamy z wiedzy na temat przesuwania wykresu funkcji w układzie współrzędnych o zadany wektor.

Jeżeli \(f(x)=-\frac{1}{x}\), to \(f(x-p)=-\frac{1}{x-p}\). Zapiszemy naszą funkcję w następującej postaci:

\(y-q=f(x-p)\)

\(y-(-3)=-\frac{1}{x-(-2)}\)

\(p=-2, q=-3\)

Wystarczy więc przesunąć wykres funkcji \(y=-\frac{1}{x}\) w układzie współrzędnych o wektor \([-2,-3]\). Pamiętać też należy, że w omawianym przypadku, zgodnie z założeniem, wykres sporządzamy dla argumentów funkcji \(x<-2\).

Poniżej tabelka zmienności funkcji dla funkcji elementarnej \(y=-\frac{1}{x}\).

\(x\)\(-\frac{1}{2}\)\(-1\)\(-2\)\(f(x)\)\(2\)\(1\)\(\frac{1}{2}\)

Sporządzamy więc wykres powyższej funkcji w tym samym układzie współrzędnych:

Otrzymujemy tym sposobem wykres funkcji \(f(x)=\frac{1}{|x+2|}-3\).

Odpowiedź


© medianauka.pl, 2009-12-29, ZAD-459


AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Uprościć wyrażenie \(W=\sqrt{(a-1)^2}+\sqrt{(a+1)^2}\).

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Rozwiązać równanie \(|x+1|-|x-1|=5\).

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Sporządzić wykres funkcji \(f(x)=|x+1|\).

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Sporządzić wykres funkcji \(f(x)=|x^2-x-2|\).

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Sporządzić wykres funkcji \(f(x)=\frac{1}{|x|}\).

Pokaż rozwiązanie zadania.

Zadanie nr 6.

Sporządzić wykres funkcji f(x)=|x^2-x|-2.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 7 — maturalne.

Na rysunku przedstawiony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność \(|2x-8|\leq 10\)

rysunek , zadanie maturalne 1/2015

Stąd wynika, że

A. \(k=2\)

B. \(k=4\)

C. \(k=5\)

D. \(k=9\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 8 — maturalne.

Dla każdej liczby \(x\), spełniającej warunek \(-3<x<0\), wyrażenie \(\frac{|x+3|-x+3}{x}\) jest równe:

A. \(2\)

B. \(3\)

C. \(-\frac{6}{x}\)

D. \(\frac{6}{x}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 9 — maturalne.

Na osi liczbowej zaznaczono sumę przedziałów.

Zadanie maturalne nr 1 z matematyki 2023

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.
Zbiór zaznaczony na osi jest zbiorem wszystkich rozwiązań nierówności

A. \(|x-3,5|\geq 1,5\)

B. \(|x-1,5|\geq 3,5\)

C. \(|x-3,5|\leq 1,5\)

D. \(|x-1,5|\leq 3,5\)

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2025 r.