Zadanie maturalne nr 1, matura 2019
Treść zadania:
Liczba \(\log_{\sqrt{2}}2\) jest równa
A. \(2\)
B. \(4\)
C. \(\sqrt{2}\)
D. \(\frac{1}{2}\)
Rozwiązanie zadania
Korzystamy z definicji logarytmu:
Logarytmem liczby \(x>0\) przy podstawie \(a\), gdzie \(a>0\) i \(a\neq 1\) nazywamy wykładnik potęgi, do której należy podnieść liczbę \(a\), aby otrzymać liczbę \(x\).
Mamy więc:
\(\log_{\sqrt{2}}2=2, bo (\sqrt{2})^2=2\)
Odpowiedź
© medianauka.pl, 2023-01-16, ZAD-4647
Zadania podobne
Zadanie nr 1.
Przedstaw liczbę \(0,2\) jako sumę trzech logarytmów o różnych podstawach.
Zadanie nr 3 — maturalne.
Skala Richtera służy do określania siły trzęsień ziemi. Siła ta opisana jest wzorem \(R=\log{\frac{A}{A_0}}\), gdzie \(A\) oznacza amplitudę trzęsienia wyrażoną w centymetrach, \(A_0=10^{-4}\ cm\) jest stałą, nazywaną amplitudą wzorcową. 5 maja 2014 roku w Tajlandii miało miejsce trzęsienie ziemi o sile \(6,2\) w skali Richtera. Oblicz amplitudę trzęsienia ziemi w Tajlandii i rozstrzygnij, czy jest ona większa, czy – mniejsza od \(100\ cm\).
Zadanie nr 4 — maturalne.
Dane są liczby \(a=-\frac{1}{27},\ b=\log_{\frac{1}{4}}{64},\ c=\log_{\frac{1}{3}}{27}\). Iloczyn \(abc\) jest równy:
A. \(-9\)
B. \(-\frac{1}{3}\)
C. \(\frac{1}{3}\)
D. \(3\)