
Zadanie maturalne nr 6, matura 2019
Treść zadania:
Równanie \((x-1)(x+2)/(x-3)=0\)
A. ma trzy różne rozwiązania: \(x=1, x=3, x=-2\).
B. ma trzy różne rozwiązania: \(x=-1, x=-3, x=2\).
C. ma dwa różne rozwiązania: \(x=1, x=-2\).
D. ma dwa różne rozwiązania: \(x=-1, x=2\).
Rozwiązanie zadania
Rozpatrujemy równanie:
\(\frac{(x-1)(x+2)}{(x-3)}=0\)
Ułamek jest równy zeru, gdy jego licznik jest równy zeru, więc:
\((x-1)(x+2)=0\)
Iloczyn jest równy zeru, gdy co najmniej jeden z jego czynników jest zerem. Poza tym mamy już postać iloczynową trójmianu kwadratowego, skąd bezpośrednio możemy odczytać pierwiastki.
\(x-1=0\)
\(x=1\)
lub
\(x+2=0\)
\(x=-2\)
Odpowiedź
© medianauka.pl, 2023-01-21, ZAD-4652


Zadania podobne

Zadanie nr 1 — maturalne.
Równanie wymierne \(\frac{3x-1}{x+5}=3\), gdzie \(x\neq -5\),
A. nie ma rozwiązań rzeczywistych.
B. ma dokładnie jedno rozwiązanie rzeczywiste.
C. ma dokładnie dwa rozwiązania rzeczywiste.
D. ma dokładnie trzy rozwiązania rzeczywiste

Zadanie nr 2 — maturalne.
Równanie \(\frac{x-1}{x+1}=x-1\):
A. ma dokładnie jedno rozwiązanie: \(x=1\).
B. ma dokładnie jedno rozwiązanie: \(x=0\).
C. ma dokładnie jedno rozwiązanie: \(x=-1\).
D. ma dokładnie dwa rozwiązania: \(x=0, x=1\).

Zadanie nr 3 — maturalne.
Równanie \(\frac{x^2+2x}{x^2-4}=0\) ma:
A. ma trzy rozwiązania \(x=-2, x=0, x=2\)
B. ma dwa rozwiązania \(x=0, x=2\)
C. ma dwa rozwiązania \(x=-2, x=2\)
D. ma jedno rozwiązanie \(x=0\)

Zadanie nr 5 — maturalne.
Rozwiąż nierówność \(\frac{2x-1}{1-x}\leq \frac{2+2x}{5x}\).

Zadanie nr 6 — maturalne.
Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Równanie \(\frac{(x+1)(x-1)^2}{(x-1)(x+1)^2}\) w zbiorze liczb rzeczywistych
A. nie ma rozwiązania.
B. ma dokładnie jedno rozwiązanie: -1.
C. ma dokładnie jedno rozwiązanie: 1.
D. ma dokładnie dwa rozwiązania: -1 oraz 1.