zadanie maturalne

Zadanie maturalne nr 1, matura 2020

Treść zadania:

Wartość wyrażenia \(x^2−6x+9\) dla \(x=\sqrt{3}+3\) jest równa

A. \(1\)

B. \(3\)

C. \(1+2\sqrt{3}\)

D. \(1-2\sqrt{3}\)


ksiązki Rozwiązanie zadania

Podstawiamy za x w wyrażeniu wartość \(\sqrt{3}+3\) i korzystamy ze wzoru skróconego mnożenia:

\(x^2-6x+9\)

\((\sqrt{3}+3)^2-6(\sqrt{3}+3)+9=\)

\(=(\sqrt{3}^2+2\sqrt{3}\cdot 3+3^2)-6\sqrt{3}-18+9=\)

\(=3+6\sqrt{3}+9-6\sqrt{3}-18+9=3\)

 

ksiązki Odpowiedź

Odpowiedź B

© medianauka.pl, 2023-02-19, ZAD-4728

AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Obliczyć:

a) \((5xy-7)^2\)

b) \((\sqrt{2}-\sqrt{6})^2\)

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Obliczyć \((x+4-y)^2\).

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Rozłożyć na czynniki wyrażenie \(x^4-y^4\).

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Oblicz:

a) \((5+2x)^2\)

b) \((a-\frac{1}{2})^2\)

c) \((\sqrt{2}-2+\sqrt{3})^2\)

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Oblicz:

a) \((1-\frac{\sqrt{2}}{2})(1+\frac{\sqrt{2}}{2})\)

b) \((1+\sqrt{2})^3\)

c) \((\sqrt{3}-\sqrt{2})^3\)

d) \((5xy-\sqrt{2}x)^2\)

e) \((1+\sqrt{2}-\sqrt{3}-\sqrt{5})^2\)

Pokaż rozwiązanie zadania.

Zadanie nr 6.

Rozłożyć na czynniki wyrażenie \(24-10a+a^2\), korzystając ze wzorów skróconego mnożenia.

Pokaż rozwiązanie zadania.

Zadanie nr 7.

Rozłożyć na czynniki wyrażenie \(12a^2-12a+3\), korzystając ze wzorów skróconego mnożenia.

Pokaż rozwiązanie zadania.

Zadanie nr 8.

Rozłożyć na czynniki sumę \(2\sqrt{2}+a\sqrt{2}-2\sqrt{3}-a\sqrt{3}\).

Pokaż rozwiązanie zadania.

Zadanie nr 9.

Pozbyć się niewymierności z mianownika

a) \(\frac{7}{1-\sqrt{7}}\)

b) \(\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 10 — maturalne.

Równość \((2\sqrt{2}-a)^2=17-12\sqrt{2}\) jest prawdziwa dla:

A. \(a=3\)

B. \(a=1\)

C. \(a=-2\)

D. \(a=-3\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 11 — maturalne.

W rozwinięciu wyrażenia \((2\sqrt{3}x+4y)^3\) współczynnik przy iloczynie \(xy^2\) jest równy

A. \(32\sqrt{3}\)

B. \(48\)

C. \(96\sqrt{3}\)

D. \(144\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 12 — maturalne.

Równość \(\frac{m}{5-\sqrt{5}}=\frac{5+\sqrt{5}}{5}\) zachodzi dla:

A. \(m=5\)

B. \(m=4\)

C. \(m=1\)

D. \(m=-5\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 13 — maturalne.

Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y prawdziwa jest nierówność 4x^2-8xy+5y^2\geq 0

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 14 — maturalne.

Liczba \((3-2\sqrt{3})^3\) jest równa:

A. \(27-24\sqrt{3}\)

B. \(27-30\sqrt{3}\)

C. \(135-78\sqrt{3}\)

D. \(135-30\sqrt{3}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 15 — maturalne.

Udowodnij, że dla każdej liczby rzeczywistej \(x\) prawdziwa jest nierówność \(x^4-x^2-2x+3>0\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 16 — maturalne.

Wartość wyrażenia \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\) jest równa:

A. \(-2\)

B. \(-2\sqrt{3}\)

C. \(2\)

D. \(2\sqrt{3}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 17 — maturalne.

Równanie \(x(x^2-4)(x^2+4)=0\) z niewiadomą \(x\):

A. nie ma rozwiązań w zbiorze liczb rzeczywistych.

B. ma dokładnie dwa rozwiązania w zbiorze liczb rzeczywistych.

C. ma dokładnie trzy rozwiązania w zbiorze liczb rzeczywistych.

D. ma dokładnie pięć rozwiązań w zbiorze liczb rzeczywistych.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 18 — maturalne.

Udowodnij, że dla dowolnych różnych liczb rzeczywistych \(x, y\) prawdziwa jest nierówność \(x^2y^2+2x^2+2y^2−8xy+4 > 0\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 19 — maturalne.

Wykaż, że dla dowolnych liczb rzeczywistych \(a\) i \(b\) prawdziwa jest nierówność \(3a^2−2ab+3b^2\geq 0\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 20 — maturalne.

Liczby dodatnie \(a\) i \(b\) spełniają równość \(a^2+2a=4b^2+4b\). Wykaż, że \(a=2b\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 21 — maturalne.

Liczba \((2\sqrt{8}-3\sqrt{2})^2\) jest równa

A. \(2\)

B. \(1\)

C. \(26\)

D. \(14\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 22 — maturalne.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Dla każdej liczby rzeczywistej \(a\) wyrażenie \((2a-3)^2-(3a+3)^2\) jest równe

A. \(-24a\)

B. \(0\)

C. \(18\)

D. \(16a^2-24a\)

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2025 r.