Zadanie maturalne nr 10, matura 2021
Treść zadania:
Funkcja \(f\) jest określona wzorem \(f(x)=\frac{x^2}{(2x-2)}\) dla każdej liczby rzeczywistej \(x \neq 1\). Wtedy dla argumentu \(x=\sqrt{3}-1\) wartość funkcji \(f\) jest równa
A. \(\frac{1}{\sqrt{3}-1)}\)
B. \(-1\)
C. \(1\)
D. \(\frac{1}{(\sqrt{3}-2)}\)
Rozwiązanie zadania
Obliczamy wartość funkcji \(f(x)=\frac{x^2}{2x-2}\) w punkcie \(x=\sqrt{3}-1\). We wzorze naszej funkcji za x podstawiamy więc daną wartość:
\(f(\sqrt{3}-1)=\frac{(\sqrt{3}-1)^2}{2(\sqrt{3}-1)-2}=\)
\(=\frac{3-2\sqrt{3}+1}{2\sqrt{3}-2-2}=\frac{-2\sqrt{3}+4}{2\sqrt{3}-4}=\)
\(=\frac{-2(\sqrt{3}-2)}{2(\sqrt{3}-2)}=\frac{-2}{2}=-1\)
Odpowiedź
© medianauka.pl, 2023-03-25, ZAD-4799
Zadania podobne
Zadanie nr 1.
Dana jest funkcja \(f(x)=\frac{x-3}{x^2+4}+x-1\)
Obliczyć:
a) \(f(1)\)
b) \(f(0)\)
c) \(f(-2)\)
d) \(f(\frac{1}{2})\).
Zadanie nr 2 — maturalne.
Funkcja f określona jest wzorem \(f(x)=\frac{2x^3}{x^6+1}\) dla każdej liczby rzeczywistej \(x\). Wtedy \(f(-\sqrt[3]{3})\) jest równa:
A. \(-\frac{\sqrt[3]{9}}{2}\)
B. \(-\frac{3}{5}\)
C. \(\frac{3}{5}\)
D. \(\frac{3}{5}\)
Zadanie nr 3 — maturalne.
Na rysunku przedstawiono wykres funkcji \(f\).
Zbiorem wartości funkcji \(f\) jest
A. \((-2,2)\)
B. \([-2,2)\)
C. \([-2,2]\)
D. \((-2,2]\)
Zadanie nr 4 — maturalne.
Funkcja kwadratowa określona jest wzorem \(f(x)=x^2+x+c\). Jeżeli \(f(3)=4\), to:
A. \(f(1)=-6\)
B. \(f(1)=0\)
C. \(f(1)=6\)
D. \(f(1)=18\)
Zadanie nr 5 — maturalne.
Do wykresu funkcji, określonej dla wszystkich liczb rzeczywistych wzorem \(y=-2^{x-2}\), należy punkt:
A. \(A=(1,-2)\)
B. \(B=(2,-1)\)
C. \(C=(1,\frac{1}{2})\)
D. \(D=(4,4)\)
Zadanie nr 6 — maturalne.
Punkt \(A=(\frac{1}{3},-1)\) należy do wykresu funkcji liniowej \(f\) określonej wzorem \(f(x)=3x+b\). Wynika stąd, że
A. \(b=2\)
B. \(b=1\)
C. \(b=-1\)
D. \(b=-2\)
Zadanie nr 7 — maturalne.
Do wykresu funkcji \(f\) określonej dla każdej liczby rzeczywistej \(x\) wzorem \(f(x)=3^x-2\) należy punkt o współrzędnych
A. \((-1,-5)\)
B. \((0,-2)\)
C. \((0,-1)\)
D. \((2,4)\)
Zadanie nr 8 — maturalne.
Funkcja liniowa \(f\) przyjmuje wartość \(2\) dla argumentu \(0\), a ponadto \(f(4)-f(2)=6\). Wyznacz wzór funkcji \(f\).
Zadanie nr 9 — maturalne.
Na rysunku przedstawiono wykres funkcji \(f\).
Iloczyn \(f(-3)\cdot f(0)\cdot f(4)\) jest równy
A. (-12)
B. (-8)
C. 0
D. 16
Zadanie nr 10 — maturalne.
Miejscem zerowym funkcji liniowej \(f\) określonej wzorem \(f(x)=\frac{1}{3}(x+3)+5\) jest liczba
A. (-3)
B. \(\frac{9}{2}\)
C. 5
D. 12