zadanie maturalne

Zadanie maturalne nr 19, matura 2021

Treść zadania:

Pole pewnego trójkąta równobocznego jest równe \(\frac{4\sqrt{3}}{9}\). Obwód tego trójkąta jest równy

A. 4

B. 2

C. \(\frac{4}{3}\)

D. 2/3


ksiązki Rozwiązanie zadania

Pole trójkąta równobocznego wyraża się wzorem \(P=\frac{a^2\sqrt{3}}{4}\), gdzie a oznacza długość boku. Zatem:

\(\frac{a^2\sqrt{3}}{4}=\frac{4\sqrt{3}}{9}/:\sqrt{3}\)

\(\frac{a^2}{4}=\frac{4}{9}/\cdot 4\)

\(a^2=\frac{16}{9}\)

\(a=\frac{4}{3}\)

\(L=3a=3\cdot \frac{4}{3}=4\)

ksiązki Odpowiedź

Odpowiedź A

© medianauka.pl, 2023-03-26, ZAD-4808

AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Na trójkącie równobocznym o boku \(a=1\) opisano okrąg. Oblicz obwód tego okręgu i pole koła wyznaczonego przez ten okrąg.

Pokaż rozwiązanie zadania.

Zadanie nr 2.

W trójkąt równoboczny o boku długości \(a=1\) wpisano koło. Oblicz jego pole i obwód.

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Znaleźć równanie okręgu opisanego na trójkącie równobocznym, wyznaczonym przez punkty \(A=(1,1), B=(5,1), C=(3,2\sqrt{3}+1)\).

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Dane są punkty \(A=(1,1), B=(4,-2)\). Znajdź punkt \(C\), który jest wierzchołkiem trójkąta równobocznego \(ABC\).

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Dany jest trójkąt równoboczny o boku \(a\). Środki boków tego trójkąta dzielą dany trójkąt na mniejsze części. Oblicz wysokość mniejszego trójkąta leżącego w środku danego trójkąta.

Pokaż rozwiązanie zadania.

Zadanie nr 6.

W trójkąt równoboczny o boku długości 2 wpisano kwadrat o polu 1. Oblicz wysokość trójkąta równoramiennego, wyznaczonego przez ten kwadrat.

Pokaż rozwiązanie zadania.

Zadanie nr 7.

Dany jest trójkąt równoboczny o boku a. Środki boków tego trójkąta dzielą dany trójkąt na mniejsze części. Wykaż, że wszystkie mniejsze trójkąty są przystające i są trójkątami równobocznymi.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 8 — maturalne.

Wysokość trójkąta równobocznego jest równa \(6\sqrt{3}\). Pole tego trójkąta jest równe

A. \(3\sqrt{3}\)

B. \(4\sqrt{3}\)

C. \(27\sqrt{3}\)

D. \(36\sqrt{3}\)

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2023 r.