zadanie maturalne

Zadanie maturalne nr 35, matura 2021

Treść zadania:

Punkty \(A=(−20, 12)\) i \(B=(7, 3)\) są wierzchołkami trójkąta równoramiennego ABC, w którym \(|AC|=|BC|\). Wierzchołek \(C\) leży na osi \(Oy\) układu współrzędnych. Oblicz współrzędne wierzchołka \(C\) oraz obwód tego trójkąta.


ksiązki Rozwiązanie zadania

Sporządzamy rysunek poglądowy.

Rysunek

Ponieważ trójkąt ABC jest równoboczny, to wysokość opuszczona z punktu C na p[odstawę, dzieli ją na dwie części. Punkt K jest więc środkiem odcinka AB. Mając dane współrzędne A i B w prosty sposób znajdziemy współrzędne punktu K:

\(A=(-20,12)\)

\(B=7,3\)

\(K=(\frac{020+7}{2},\frac{12+3}{2})=(-\frac{13}{2},\frac{15}{2})\)

Znajdźmy wzór prostej przechodzącej przez A i B:

\(\begin{cases}12=-20a+b\\3=7a+b \end{cases}\)

Odejmując od siebie te równania otrzymamy:

\(9=-27a\)

\(a=-\frac{1}{3}\)

Prosta k jest prostopadła do prostej, która zawiera odcinek AB, zatem jest współczynnik kierunkowy jest równy \(-\frac{1}{a}=3\).

Równanie prostej k przyjmuje postać:

\(y=3x+b_k\)

Znamy współrzędne punktu K, zatem:

\(\frac{15}{2}=3\cdot (-\frac{13}{2})+b_k\)

\(b_k=\frac{15}{2}+\frac{39}{2}=27\)

Stąd wiemy już, że punkt C ma współrzędne \(C=(0,27)\), bo wystarczy obliczyć f(0) dla równania prostej k.

Obliczamy teraz długość odcinka AB:

\(|AB|=\sqrt{(7-(-20))^2+(3-12)^2}=\sqrt{729+81}=\sqrt{810}=9\sqrt{10}\)

Ponieważ |AC|=|BC|, wystarczy obliczyć jedną z tych długości:

\(|AC|=\sqrt{(0-(-20))^2+(27-12)^2}=\sqrt{400+225}=\sqrt{625}=25\)

Obwód L trójkąta ABC jest równy:

\(L=|AB|+2|AC|=9\sqrt{10}+50\)

ksiązki Odpowiedź

\(L=50+9\sqrt{10}\)

© medianauka.pl, 2023-03-29, ZAD-4824

AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Obliczyć pole i obwód trójkąta prostokątnego, wyznaczonego przez punkty \(A=(1,2), B=(1,3), C=(4,1)\).

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Oblicz pole powierzchni i obwód trójkąta równobocznego o wysokości \(h=2 cm\).

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Środki trójkąta równobocznego o boku długości 2 połączono ze sobą tak, że powstał mniejszy trójkąt wewnątrz większego. Obliczyć jego pole.

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Ceny poszczególnych działek są następujące:

A. 60 000 PLN

B. 50 000 PLN

C. 50 000 PLN

D. 100 000 PLN

Zakup której działki jest najbardziej opłacalny?

Twierdzenie Pitagorasa - zadanie

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Dany jest trójkąt o bokach długości 2, 3 i 4. Oblicz pole powierzchni tego trójkąta.

Pokaż rozwiązanie zadania.

Zadanie nr 6.

Wektory \(\vec{a}=[1,2], \vec{b}=[-3,4]\) wyznaczają trójkąt. Obliczyć jego pole.

Pokaż rozwiązanie zadania.

Zadanie nr 7.

Dany jest wektor \(\vec{AB}=[2,5]\) zaczepiony w punkcie \(A=(1,1)\). Znaleźć taki punkt \(C\), leżący na prostej \(y=2\), że pole trójkąta \(ABC\) jest równe 10.

Pokaż rozwiązanie zadania.

Zadanie nr 8.

Dany jest trójkąt równoramienny o ramionach długości 5 i kącie wewnętrznym między tymi ramionami \(\alpha=30°\). Oblicz pole powierzchni tego trójkąta.

Pokaż rozwiązanie zadania.

Zadanie nr 9.

Na trójkącie o polu równym 6 i o bokach o długości 2, 3 i 4 opisano okrąg. Oblicz długość promienia tego okręgu.

Pokaż rozwiązanie zadania.

Zadanie nr 10.

Dany jest trójkąt \(A, B, C\) o wierzchołkach \(A=(-1,1), B=(2,1), C=(-2,-1)\). Oblicz jego pole.

Pokaż rozwiązanie zadania.

Zadanie nr 11.

Z kwadratu o boku a wycięto trójkąt tak, że jeden z jego wierzchołków stanowi środek boku kwadratu, a jeden z boków tego trójkąta stanowi bok kwadratu. Czy pole ścinków jest większe od pola trójkąta?

Pokaż rozwiązanie zadania.

Zadanie nr 12.

W trójkąt równoramienny o polu \(\sqrt{15}\) wpisano okrąg o promieniu \(r=\frac{\sqrt{15}}{5}\). Na tym samy trójkącie opisano okrąg o promieniu \(R=\frac{8\sqrt{15}}{15}\). Oblicz długości boków tego trójkąta.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 13 — maturalne.

Okręgi o promieniach 3 i 4 są styczne zewnętrznie. Prosta styczna do okręgu o promieniu 4 w punkcie \(P\) przechodzi przez środek okręgu o promieniu 3 (zobacz rysunek).

ilustracja do zadania

Pole trójkąta, którego wierzchołkami są środki okręgów i punkt styczności \(P\), jest równe:

A. \(14\)

B. \(2\sqrt{33}\)

C. \(4\sqrt{33}\)

D. \(12\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 14 — maturalne.

Kąt \(CAB\) trójkąta prostokątnego \(ACB\) ma miarę \(30°\). Pole kwadratu \(DEFG\), wpisanego w ten trójkąt (zobacz rysunek), jest równe 4. Oblicz pole trójkąta \(ACB\).

rysunek do zadania 34, matura 2014

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 15 — maturalne.

Obwód trójkąta \(ABC\), przedstawionego na rysunku, jest równy:

A. \(3+\frac{\sqrt{3}}{2}\)

B. \(2+\frac{\sqrt{2}}{2}\)

C. \(3+\sqrt{3}\)

D. \((2+\sqrt{2}\)

Ilustracja do zadania

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 16 — maturalne.

W trójkącie ostrokątnym \(ABC\) bok \(AB\) ma długość \(c\), długość boku \(BC\) jest równa a oraz \(\angle ABC=\beta\). Dwusieczna kąta \(ABC\) przecina bok \(AC\) trójkąta w punkcie \(E\). Wykaż, że długość odcinka \(BE\) jest równa \(\frac{2ac\cdot \cos{\frac{\beta}{2}}}{a+c}\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 17 — maturalne.

W trójkącie równoramiennym wysokość opuszczona na podstawę jest równa 36, a promień okręgu wpisanego w ten trójkąt jest równy 10. Oblicz długości boków tego trójkąta i promień okręgu opisanego na tym trójkącie.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 18 — maturalne.

Przyprostokątna \(AC\) trójkąta prostokątnego ABC ma długość 8 oraz \(tg\alpha=\frac{2}{5}\) (zobacz rysunek).

Zadanie 18, matura 2021

Pole tego trójkąta jest równe

A. \(12\)

B. \(\frac{37}{3}\)

C. \(\frac{62}{5}\)

D. \(\frac{64}{5}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 19 — maturalne.

Dany jest trójkąt równoboczny \(ABC\). Na bokach \(AB\) i \(AC\) wybrano punkty — odpowiednio — \(D\) i \(E\) takie, że \(|BD|=|AE=\frac{1}{3}|AB|\). Odcinki \(CD\) i \(BE\) przecinają się w punkcie \(P\) (zobacz rysunek).

Matura 2021, zadanie 8

Wykaż, że pole trójkąta \(DBP\) jest 21 razy mniejsze od pola trójkąta \(ABC\).

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2025 r.