Zadanie maturalne nr 20, matura 2022
Treść zadania:
Boki równoległoboku mają długości 6 i 10, a kąt rozwarty między tymi bokami ma miarę 120°. Pole tego równoległoboku jest równe
A. \(30\sqrt{3}\)
B. \(30\)
C. \(60\sqrt{3}\)
D. \(60\)
Rozwiązanie zadania
Suma miar kątów wewnętrznych w równoległoboku wynosi 360°, a naprzeciwległe kąty w równoległoboku mają równe miary. Jesli oznaczymy jeden z kątów przez \(\alpha\), to:
\(2\alpha+2\cdot 120°=360°/:2\)
\(\alpha+120°=180°\)
\(\alpha=60°\)
Jeżeli długości boków wynoszą \(a\) i \(b\), to pole równoległoboku obliczymy ze wzoru:
\(P=ab\sin{\alpha}=6\cdot 10\cdot\sin{60°}=60\cdot \frac{\sqrt{3}}{2}=30\sqrt{3}\)
Odpowiedź
© medianauka.pl, 2023-04-24, ZAD-4862
Zadania podobne
Zadanie nr 1.
Jedna z wysokości w równoległoboku o polu 10 ma długość 2, druga z wysokości ma długość 4. Oblicz obwód tego równoległoboku.
Zadanie nr 2.
Kąt między dwoma bokami równoległoboku o długościach 5 cm i 6 cm ma miarę równą 30°. Oblicz pole tego równoległoboku.
Zadanie nr 3.
Obliczyć pole równoległoboku \(ABCD\), jeżeli wiadomo, że \(A=(1,1), B=(5,1), C=(7,3), D=(3,3)\).
Zadanie nr 4.
Długość krótszego boku równoległoboku oraz jednej z jego przekątnych jest równa. Oblicz pole powierzchni tego równoległoboku, jeżeli wiadomo, że drugi z boków jest razy dłuższy od pierwszego.
Zadanie nr 5 — maturalne.
Pole prostokąta ABCD jest równe 90. Na bokach \(AB\) i \(CD\) wybrano — odpowiednio — punkty \(P\) i \(R\), takie, że \(\frac{|AP|}{|PB|}=\frac{|CR|}{|RD|}=\frac{3}{2}\) (zobacz rysunek).
Pole czworokąta \(APCR\) jest równe
A. 36
B. 40
C. 54
D. 60