Zadanie - dziedzna funkcji wymiernej

Treść zadania:

Wyznaczyć dziedzinę funkcji \(f(x)=\frac{x^4-x^3+x^2+6x-1}{6x^3-5x^2-2x+1}\)


Rozwiązanie zadania

Mamy do czynienia z funkcją wymierną, której dziedziną jest zbiór liczb rzeczywistych z pominięciem pierwiastków wielomianu, który znajduje się w mianowniku ułamka. Zatem:

\(W(x)=6x^3-5x^2-2x+1\neq 0\)

Musimy znaleźć pierwiastki powyższego wielomianu. Rozwiązujemy zatem równanie algebraiczne. Pierwiastków szukamy najpierw pośród podzielników wyrazu wolnego, czyli wśród liczb 1 i -1. Sprawdzamy, czy są to pierwiastki wielomianu poprzez zwykłe podstawienie:

\(W(1)=6\cdot 1^3-5\cdot 1^2-2\cdot 1+1=6-5-2+1=0\)

\(W(-1)=-6-5+2+1=-8\neq 0\)

Znaleźliśmy jeden pierwiastek. Teraz możemy w celu znalezienia kolejnych pierwiastków podzielić wielomian \(W(x)\) przez \((x-1)\), ale możemy też skorzystać z twierdzenia, według którego w przypadku, gdy współczynnik przy \(x\) w najwyższej potędze jest różny od jedności (a jest równy 6), możemy typować także ułamki pośród pierwiastków wielomianu.

Podzielniki wyrazu wolnego: \(1,-1\).

Podzielniki wyrazu przy \(x^3: 1,-1, 2, -2, 3, -3, 6, -6\).

Wszystkie ułamki, wśród których może się znaleźć pierwiastek wielomianu \(W(x): \frac{1}{2}, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{3}, \frac{1}{6}, -\frac{1}{6}\) (Dzielimy podzielniki wyrazu wolnego przez podzielniki wyrazu \(a_n\))

\(W(\frac{1}{2})=6\cdot (\frac{1}{2})^3-5\cdot (\frac{1}{2})^2-2\cdot \frac{1}{2}+1=\ ^3\cancel{6}\cdot \frac{1}{\cancel{8}_4}-5\cdot \frac{1}{4}-1+1=\)

(\frac{3}{4}-\frac{5}{4}=-\frac{2}{4}=-\frac{1}{2}\neq 0\)

\(W(-\frac{1}{2})=6\cdot (-\frac{1}{2})^3-5\cdot (-\frac{1}{2})^2-2\cdot (-\frac{1}{2})+1=\)

\(=-\ ^3\cancel{6}\cdot \frac{1}{\cancel{8}_4}-5\cdot \frac{1}{4}+1+1=-\frac{3}{4}-\frac{5}{4}+2=-\frac{8}{4}+2=-2+2=0\)

\(W(\frac{1}{3})=6\cdot (\frac{1}{3})^3-5\cdot (\frac{1}{3})^2-2\cdot \frac{1}{3}+1=\ ^2\cancel{6}\cdot \frac{1}{\cancel{27}_9}-5\cdot \frac{1}{9}-\frac{2}{3}+1=\)

\(=\frac{2}{9}-\frac{5}{9}-\frac{6}{9}+1=-1+1=0\)

Znaleźliśmy dwa kolejne pierwiastki: \(-\frac{1}{2} i \frac{1}{3}. Ponieważ wielomian jest trzeciego stopnia, to może mieć co najwyżej trzy pierwiastki. Znaleźliśmy więc już wszystkie pierwiastki, które nie wchodzą do dziedziny analizowanej funkcji.

Odpowiedź

Dziedziną funkcji jest zbiór \(\mathbb{R}\setminus \lbrace -\frac{1}{2},\frac{1}{3},1 \rbrace\)

© medianauka.pl, 2010-01-21, ZAD-532


AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Rozwiązać równanie wykładnicze \((\frac{1}{2})^{x-1}-2^{2x}-1=0\).

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Rozwiązać równanie wielomianowe \(x^6-6x^5+x^4+16x^3+15x^2+22x+15=0\).

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Wyznaczyć dziedzinę funkcji \(f(x)=\frac{3x^2-2x+1}{2x^3-3x^2-2x}\).

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Rozwiązać równanie \(x^4+3x^3+4x^2+3x+1=0\).

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Rozwiązać równanie \(8x^3-10x^2+x+1=0\).

Pokaż rozwiązanie zadania.

Zadanie nr 6.

Dla jakich wartości parametrów \(a\) i \(b\) równanie \(x^4-6x^3+10x^2-bx+a=0\) ma podwójny pierwiastek, równy 3?

Pokaż rozwiązanie zadania.

Zadanie nr 7.

Rozwiązać równanie \(3x^2=\frac{6}{x+1}\).

Pokaż rozwiązanie zadania.

Zadanie nr 8.

Rozwiązać równanie \(30x^5-17x^4+27x^3-15x^2-3x+2=0\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 9 — maturalne.

Rozwiązać równanie \((4-x)(x^2+2x-15)=0\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 10 — maturalne.

Suma wszystkich pierwiastków równania \((x+3)(x+7)(x-11)=0\) jest równa:

A. \(-1\)

B. \(21\)

C. \(1\)

D. \(-21\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 11 — maturalne.

Wspólnym pierwiastkiem równań \((x^2-1)(x-10)(x-5)=0\) i \(\frac{2x-10}{x-1}=0\) jest liczba:

A. -1

B. 1

C. 5

D. 10

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 12 — maturalne.

Rozwiąż równanie \(9x^3+18x^2-4x-8=0\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 13 — maturalne.

Rozwiąż równanie \(x^3−7x^2−4x+28=0\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 14 — maturalne.

Rozwiąż równanie \(x^3−5x^2−9x+45=0\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 15 — maturalne.

Suma wszystkich rozwiązań równania \(x(x−3)(x+2)=0\) jest równa

A. 0

B. 1

C. 2

D. 3

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 16 — maturalne.

Rozwiąż równanie \((x^2− 1)(x^2−2x)=0\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 17 — maturalne.

Iloczyn wszystkich rozwiązań równania \(2x(x^2-9)(x+1)=0\) jest równy

A. -3

B. 3

C. 0

D. 9

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 18 — maturalne.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Jednym z rozwiązań równania \(\sqrt{3}(x^2-2)(x+3)=0\) jest liczba

A. 3

B. 2

C. \(\sqrt{3}\)

D. \(\sqrt{2}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 19 — maturalne.

Rozwiąż równanie \(3x^3-2x^2-12x+8=0\).

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2025 r.