Nierówność drugiego stopnia (kwadratowa) z dwiema niewiadomymi - Zadanie 181 -

Treść zadania:

Rozwiązać graficznie nierówność:

a) \(x^2+y^2\leq 4\)

b) \(x^2+y^2>1\)


ksiązki Rozwiązanie zadania

Podpunkt a)

Przyjrzyjmy się najpierw równaniu okręgu w układzie współrzędnych:

\((x-p)^2+(y-q)^2=r^2\)

gdzie \(S=(p,q)\) jest środkiem okręgu, a \(r\) jego promieniem. W naszym przypadku nierówność bardzo przypomina tę postać \((x-0)^2+(y-0)^2\leq 2^2\) z tą różnicą, że jest to nierówność, a nie równanie. Możemy ją zinterpretować w następujący sposób: mamy do czynienia ze wszystkimi okręgami o środku \(S=(0,0)\) i promieniu równym lub mniejszym \(2\).

Sporządzamy rysunek, który stanowi graficzne rozwiązanie nierówności.

Rozwiązanie graficzne nierówności x^2+y^2≤4

Zauważmy, że nierówność opisuje koło o środku w początku układu współrzędnych i promieniu o długości \(2\).

Podpunkt b)

Znów przyjrzyjmy się najpierw równaniu okręgu:

\((x-p)^2+(y-q)^2=r^2\)

gdzie \(S=(p,q)\) jest środkiem okręgu, a \(r\) jego promieniem. W naszym przypadku nierówność bardzo przypomina tę postać \((x-0)^2+(y-0)^2>1^2\) z tą różnicą, że jest to nierówność, a nie równanie. Możemy ją zinterpretować w następujący sposób: mamy do czynienia ze wszystkimi okręgami o środku \(S=(0,0)\) i promieniu większym od \(1\).

Sporządzamy rysunek.

Rozwiązanie graficzne nierówności x^2+y^2>1

Rozwiązaniem graficznym nierówności jest zakreskowana figura. Ponieważ mamy do czynienia z nierównością ostrą, okrąg nie należy do tej figury.


© medianauka.pl, 2010-02-03, ZAD-571

AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Rozwiązać graficznie nierówność \(xy+2>1\).

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Rozwiązać graficznie nierówność \(y\leq -x^2+x+2\).

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2023 r.