Zadanie - wzajemne położenie prostych w układzie
Treść zadania:
Dana jest prosta o równaniu \(y=-7x+5\). Znaleźć równanie prostej równoległej do tej prostej, przechodzącej przez początek układu współrzędnych.
Rozwiązanie zadania
Oznaczmy równanie szukanej prostej przez \(y=ax+b\). Wiemy, że proste są równoległe, gdy ich współczynniki kierunkowe \(a\) są równe. Stąd wiemy już, że \(a=-7\). Wiemy też, że prosta, której szukamy, przechodzi przez początek układu współrzędnych, czyli przez punkt \(O(0,0)\). Podstawiamy więc te współrzędne do równania szukanej prostej i wyznaczamy współczynnik \(b\).
\(y=ax+b\)
\(a=-7\)
\(O(0,0)\)
\(0=-7\cdot 0 +b\)
\(b=0\)
Mamy oba współczynniki, możemy więc zapisać równanie prostej:
Odpowiedź
© medianauka.pl, 2010-03-11, ZAD-684


Zadania podobne
Zadanie nr 1.
Dana jest prosta o równaniu \(y=5x+\frac{1}{5}\). Znaleźć równanie prostej prostopadłej do tej prostej, przechodzącej przez punkt \(A(1,-1)\).
Zadanie nr 2.
Znaleźć równania prostych zawierających boki kwadratu ABCD, jeśli wiadomo, że współrzędne wierzchołków są liczbami całkowitymi.
Zadanie nr 3.
Znaleźć równania wszystkich prostych prostopadłych przechodzących przez punkty \(A(1,2), B(2,-1), C(-1,3)\).
Zadanie nr 4.
Znaleźć równanie prostej, która zawiera wysokość w trójkącie \(ABC\) przedstawionym na poniższym rysunku:

Zadanie nr 5 — maturalne.
Proste opisane równaniami \(y=\frac{2}{m-1}x+m-2\) oraz \(y=mx+\frac{1}{m+1}\) są prostopadłe, gdy:
A. \(m=2\)
B. \(m=\frac{1}{2}\)
C. \(m=\frac{1}{3}\)
D. \(m=-2\)

Zadanie nr 6 — maturalne.
Punkty \(A=(30,32)\) i \(B=(0,8)\) są sąsiednimi wierzchołkami czworokąta \(ABCD \) wpisanego w okrąg. Prosta o równaniu \(x-y+2=0\) jest jedyną osią symetrii tego czworokąta i zawiera przekątną \(AC\). Oblicz współrzędne wierzchołków \(C\) i \(D\) tego czworokąta.

Zadanie nr 7 — maturalne.
Prosta l o równaniu \(y=m^2x+3\) jest równoległa do prostej k o równaniu \(y=(4m-4)x-3\). Zatem:
A. \(m=2\)
B. \(m=-2\)
C. \(m=-2-2\sqrt{2}\)
D. \(m=-2+2\sqrt{2}\)

Zadanie nr 8 — maturalne.
Proste o równaniach: \(y=2mx-m^2-1\) oraz \(y=4m^2x+m^2+1\) są prostopadłe dla:
A. \(m=-\frac{1}{2}\)
B. \(m=\frac{1}{2}\)
C. \(m=1\)
D. \(m=2\)

Zadanie nr 9 — maturalne.
Odległość początku układu współrzędnych od prostej o równaniu \(y = 2x + 4\) jest równa
A. \(\frac{\sqrt{5}}{5}\)
B. \(\frac{4\sqrt{5}}{5}\)
C. \(\frac{4}{5}\)
D. \(4\)

Zadanie nr 10 — maturalne.
W układzie współrzędnych punkty \(A=(4,3)\) i \(B=(10,5)\) są wierzchołkami trójkąta ABC. Wierzchołek \(C\) leży na prostej o równaniu \(y=2x+3\). Oblicz współrzędne punktu \(C\), dla którego kąt \(ABC\) jest prosty.

Zadanie nr 11 — maturalne.
Proste o równaniach \(y=(2m+2)x−2019\) oraz \(y=(3m−3)x+2019\) są równoległe, gdy
A. \(m=-1\)
B. \(m=0\)
C. \(m=1\)
D. \(m=5\)

Zadanie nr 12 — maturalne.
Prosta o równaniu \(y=ax+b\) jest prostopadła do prostej o równaniu \(y=− 4x+1\) i przechodzi przez punkt \(P=(\frac{1}{2},0)\), gdy
A. \(a=-4\) i \(b=-2\)
B. \(a=\frac{1}{4}\) i \(b=-\frac{1}{8}\)
C. \(a=-4\) i \(b=2\)
D. \(a=\frac{1}{4}\) i \(b=\frac{1}{2}\)

Zadanie nr 13 — maturalne.
Proste o równaniach \(y=(m−2)x\) oraz \(y=\frac{3}{4}x+7\) są równoległe. Wtedy
A. \(m=-\frac{5}{4}\)
B. \(m=\frac{2}{3}\)
C. \(m=\frac{11}{4}\)
D. \(m=\frac{10}{3}\)

Zadanie nr 14 — maturalne.
Na rysunku obok przedstawiono geometryczną interpretację jednego z niżej zapisanych układów
Proste o równaniach \(y=3x-5\) oraz \(y=\frac{(m-3)}{2}+\frac{9}{2}\) są równoległe, gdy
A. \(m=1\)
B. \(m=3\)
C. \(m=6\)
D. \(m=9\)

Zadanie nr 15 — maturalne.
Dane są cztery proste k, l, m o równaniach:
\(k: y=-x+1\)
\(l: y=\frac{2}{3}x+1\)
\(m: y=-\frac{3}{2}x+4\)
\(n: y=-\frac{2}{3}x-1\)
Wśród tych prostych prostopadłe są
A. proste k oraz l.
B. proste k oraz n.
C. proste l oraz m.
D. proste m oraz n.

Zadanie nr 16 — maturalne.
W kartezjańskim układzie współrzędnych \((x,y)\) dana jest prosta \(k\) o równaniu \(y=-\frac{1}{3}x+2\). Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Prosta o równaniu \(y=ax+b\) jest równoległa do prostej \(k\) i przechodzi przez punkt \(P=(3,5)\), gdy
A. \(a=3, b=4\)
B. \(a=-\frac{1}{3}, b=4\)
C. \(a=3, b=-4\)
D. \(a=-\frac{1}{3}, b=6\)