Zadanie - wzajemne położenie prostych na płaszczyźnie
Treść zadania:
Znaleźć równanie prostej, która zawiera wysokość w trójkącie \(ABC\) przedstawionym na poniższym rysunku:
Rozwiązanie zadania
Aby wyznaczyć równanie prostej potrzebne są dwa punkty. Tutaj ich nie znamy (znamy tylko współrzędne punktu \(A\)). Skorzystamy z tego, że wysokość w trójkącie \(ABC\) jest prostopadła do podstawy tego trójkąta (bok \(BC\)). Znamy dwa punkty należące do podstawy trójkąta. Podstawiamy zatem ich współrzędne do ogólnego równania prostej (\(y=ax+b\)), aby wyznaczyć współczynniki \(a\) oraz \(b\)
\(B(4,0), C(0,3)\)
\(y=ax+b\)
\(\begin{cases}0=a\cdot 4+b\\3=a\cdot 0+b\end{cases}\)
\(\begin{cases}0=4a+b\\b=3\end{cases}\)
\(\begin{cases}0=4a+3/:4\\b=3\end{cases}\)
\(\begin{cases}a=-\frac{3}{4}\\ b=3\end{cases}\)
\(y=-\frac{3}{4}x+3\)
znamy równanie prostej zawierającą podstawę trójkąta \(ABC\). Teraz wystarczy skorzystać z własności położenia prostych na płaszczyźnie, pamiętając że proste prostopadłe mają współczynniki kierunkowe spełniające warunek:
Znajdziemy teraz prostą prostopadłą do podstawy(prostej zawierającą podstawę), która przechodzi przez punkt \(A(0,0)\). Oznaczmy równanie szukanej prostej przez \(y=a_1x+b_1\). Współczynniki kierunkowe obu prostych muszą być przeciwne i odwrotne. Wystarczy teraz podstawić współrzędne punktu \(A\) do równania szukanej prostej i w ten sposób wyznaczymy współczynnik \(b_1\):
\(y=a_1x+b_1\)
\(a_1=-\frac{1}{-\frac{3}{4}}=\frac{4}{3}\)
\(y=\frac{4}{3}x+b_1\)
\(A(0,0)\)
\(0=\frac{4}{3}\cdot 0+b_1\)
\( b_1=0\)
\(y=\frac{4}{3}x\)
Odpowiedź
© medianauka.pl, 2010-03-12, ZAD-688
Zadania podobne
Zadanie nr 1.
Dana jest prosta o równaniu \(y=-7x+5\). Znaleźć równanie prostej równoległej do tej prostej, przechodzącej przez początek układu współrzędnych.
Zadanie nr 2.
Dana jest prosta o równaniu \(y=5x+\frac{1}{5}\). Znaleźć równanie prostej prostopadłej do tej prostej, przechodzącej przez punkt \(A(1,-1)\).
Zadanie nr 3.
Znaleźć równania prostych zawierających boki kwadratu ABCD, jeśli wiadomo, że współrzędne wierzchołków są liczbami całkowitymi.
Zadanie nr 4.
Znaleźć równania wszystkich prostych prostopadłych przechodzących przez punkty \(A(1,2), B(2,-1), C(-1,3)\).
Zadanie nr 5 — maturalne.
Proste opisane równaniami \(y=\frac{2}{m-1}x+m-2\) oraz \(y=mx+\frac{1}{m+1}\) są prostopadłe, gdy:
A. \(m=2\)
B. \(m=\frac{1}{2}\)
C. \(m=\frac{1}{3}\)
D. \(m=-2\)
Zadanie nr 6 — maturalne.
Punkty \(A=(30,32)\) i \(B=(0,8)\) są sąsiednimi wierzchołkami czworokąta \(ABCD \) wpisanego w okrąg. Prosta o równaniu \(x-y+2=0\) jest jedyną osią symetrii tego czworokąta i zawiera przekątną \(AC\). Oblicz współrzędne wierzchołków \(C\) i \(D\) tego czworokąta.
Zadanie nr 7 — maturalne.
Prosta l o równaniu \(y=m^2x+3\) jest równoległa do prostej k o równaniu \(y=(4m-4)x-3\). Zatem:
A. \(m=2\)
B. \(m=-2\)
C. \(m=-2-2\sqrt{2}\)
D. \(m=-2+2\sqrt{2}\)
Zadanie nr 8 — maturalne.
Proste o równaniach: \(y=2mx-m^2-1\) oraz \(y=4m^2x+m^2+1\) są prostopadłe dla:
A. \(m=-\frac{1}{2}\)
B. \(m=\frac{1}{2}\)
C. \(m=1\)
D. \(m=2\)
Zadanie nr 9 — maturalne.
Odległość początku układu współrzędnych od prostej o równaniu \(y = 2x + 4\) jest równa
A. \(\frac{\sqrt{5}}{5}\)
B. \(\frac{4\sqrt{5}}{5}\)
C. \(\frac{4}{5}\)
D. \(4\)
Zadanie nr 10 — maturalne.
W układzie współrzędnych punkty \(A=(4,3)\) i \(B=(10,5)\) są wierzchołkami trójkąta ABC. Wierzchołek \(C\) leży na prostej o równaniu \(y=2x+3\). Oblicz współrzędne punktu \(C\), dla którego kąt \(ABC\) jest prosty.
Zadanie nr 11 — maturalne.
Proste o równaniach \(y=(2m+2)x−2019\) oraz \(y=(3m−3)x+2019\) są równoległe, gdy
A. \(m=-1\)
B. \(m=0\)
C. \(m=1\)
D. \(m=5\)
Zadanie nr 12 — maturalne.
Prosta o równaniu \(y=ax+b\) jest prostopadła do prostej o równaniu \(y=− 4x+1\) i przechodzi przez punkt \(P=(\frac{1}{2},0)\), gdy
A. \(a=-4\) i \(b=-2\)
B. \(a=\frac{1}{4}\) i \(b=-\frac{1}{8}\)
C. \(a=-4\) i \(b=2\)
D. \(a=\frac{1}{4}\) i \(b=\frac{1}{2}\)
Zadanie nr 13 — maturalne.
Proste o równaniach \(y=(m−2)x\) oraz \(y=\frac{3}{4}x+7\) są równoległe. Wtedy
A. \(m=-\frac{5}{4}\)
B. \(m=\frac{2}{3}\)
C. \(m=\frac{11}{4}\)
D. \(m=\frac{10}{3}\)
Zadanie nr 14 — maturalne.
Na rysunku obok przedstawiono geometryczną interpretację jednego z niżej zapisanych układów
Proste o równaniach \(y=3x-5\) oraz \(y=\frac{(m-3)}{2}+\frac{9}{2}\) są równoległe, gdy
A. \(m=1\)
B. \(m=3\)
C. \(m=6\)
D. \(m=9\)
Zadanie nr 15 — maturalne.
Dane są cztery proste k, l, m o równaniach:
\(k: y=-x+1\)
\(l: y=\frac{2}{3}x+1\)
\(m: y=-\frac{3}{2}x+4\)
\(n: y=-\frac{2}{3}x-1\)
Wśród tych prostych prostopadłe są
A. proste k oraz l.
B. proste k oraz n.
C. proste l oraz m.
D. proste m oraz n.
Zadanie nr 16 — maturalne.
W kartezjańskim układzie współrzędnych \((x,y)\) dana jest prosta \(k\) o równaniu \(y=-\frac{1}{3}x+2\). Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Prosta o równaniu \(y=ax+b\) jest równoległa do prostej \(k\) i przechodzi przez punkt \(P=(3,5)\), gdy
A. \(a=3, b=4\)
B. \(a=-\frac{1}{3}, b=4\)
C. \(a=3, b=-4\)
D. \(a=-\frac{1}{3}, b=6\)