Zadanie - pochodna funkcji w punkcie

Treść zadania:

Obliczyć pochodną funkcji \(f(x)=-x^2+x-1\) w punkcie \(x_0=-1\).


ksiązki Rozwiązanie zadania

Obliczamy wartość funkcji w punkcie \(x_0=-1\).

Mamy funkcję \(f(x)=-x^2+x-1\), więc wartość funkcji w tym punkcie obliczymy, podstawiając liczbę \(-1\) do wzoru funkcji za \(x\).

\(f(x_0)=f(-1)=-(-1)^2-1-1=-3\)

Obliczamy wartość funkcji w punkcie \(x_0=-1+h=h-1\) (mamy tutaj przyrost argumentu funkcji i badamy jak zmieni się wartość funkcji). Wartość funkcji w tym punkcie obliczymy, podstawiając liczbę \(h-1\) do wzoru funkcji za \(x\).

\(f(x_0+h)=f(h-1)=-(h-1)^2+(h-1)=-(h^2-2h+1)+h-2=\)

\(=-h^2+2h-1+h-2=-h^2+3h-3\)

Skorzystaliśmy tutaj ze wzoru skróconego mnożenia:

\((a-b)^2=a^2-2ab+b^2\)

Możemy przystąpić do obliczenia pochodnej funkcji w punkcie, korzystając ze wzoru:

\(f'(x_0)=\displaystyle\lim_{h\to 0}{\frac{f(x_0+h)-f(x_0)}{h}}\)

Podstawiamy wyliczone wcześniej wartości funkcji do wzoru:

\(f'(x_0)=f'(-1)=\displaystyle\lim_{h\to 0}{\frac{f(h-1)-f(-1)}{h}}=\)

\(=\displaystyle\lim_{h\to 0}{\frac{-h^2+3h-3-(-3)}{h}}= \lim_{h\to 0}{\frac{-h^2+3h}{h}}=\)

\(=\displaystyle\lim_{h\to 0}{\frac{-\cancel{h}(h-3)}{\cancel{h}}}=\lim_{h\to 0}{(-h+3)}=-0+3=3\)

ksiązki Odpowiedź

Pochodna funkcji \(f(x)=-x^2+x-1\) w punkcie \(x_0=-1\) jest równa \(3\).

© medianauka.pl, 2010-09-04, ZAD-886

AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Obliczyć pochodną funkcji \(f(x)=x^2\) w punkcie \(x_0\).

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Obliczyć pochodną funkcji \(f(x)=\frac{1}{x+1}\) w punkcie \(x_0=0\).

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Obliczyć pochodną funkcji \(f(x)=|x|\) w punkcie \(x_0=0\).

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Obliczyć pochodną funkcji \(f(x)=\begin{cases} x^2 \ dla \ x\geq 0 \\ -2x^2 \ dla \ x<0 \end{cases}\) w punkcie \(x_0=0\).

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Obliczyć pochodną funkcji \(f(x)=|x|\) w punkcie \(x_0=0\).

Pokaż rozwiązanie zadania.

Zadanie nr 6.

Obliczyć pochodną funkcji

\(a) f(x)=-\frac{1}{2}\)

\(b) g(x)=x^{17}\)

\(c) h(x)=x^{\frac{1}{3}}\)

\( d) i(x)=x\)

\( e) j(x)=\sqrt{2}\)

Pokaż rozwiązanie zadania.

Zadanie nr 7.

Obliczyć pochodną funkcji:

\(a) f(x)=-x+5\)

\(b) g(x)=-5x^2+2\sqrt{x}\)

\( c) h(x)=\sin{x}+2\cos{x}\)

\( d) i(x)=-\frac{1}{x}-tgx\)

\( e) j(x)=3x^3-2x^2+x-1\)

Pokaż rozwiązanie zadania.

Zadanie nr 8.

Obliczyć pochodną funkcji:

\(a) f(x)=x\sin{x}\)

\(b) g(x)=\sin^2{x}\)

\(c) h(x)=x\sqrt{x}\)

Pokaż rozwiązanie zadania.

Zadanie nr 9.

Obliczyć pochodną funkcji:

a) \(f(x)=\frac{\sin{x}}{x}\)

b) \(f(x)=\frac{2x+1}{3x-1}\)

c) \(f(x)=\frac{\sin{x}}{\cos{x}}\)

Pokaż rozwiązanie zadania.

Zadanie nr 10.

Obliczyć pochodną funkcji:

a) \(f(x)=\frac{\sqrt{x}}{x}\)

b) \(f(x)=\frac{5x^3-x+1}{x^2-1}\)

c) \(f(x)=\frac{5x^4-3x^2}{2x^3-1}\)

Pokaż rozwiązanie zadania.

Zadanie nr 11.

Obliczyć pochodną funkcji \(f(x)=\frac{\sqrt[5]{x}}{10x^8}\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 12 — maturalne.

Funkcja \(f(x)=\frac{3x-1}{x^2+4}\) jest określona dla każdej liczby rzeczywistej \(x\). Pochodna tej funkcji jest określona wzorem:

A. \(f'(x)=\frac{-3x^2+2x+12}{(x^2+4)^2}\)

B. \(f'(x)=\frac{-9x^2+2x-12}{(x^2+4)^2}\)

C. \(f'(x)=\frac{3x^2-2x-12}{(x^2+4)^2}\)

D. \(f'(x)=\frac{9x^2-2x+12}{(x^2+4)^2}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 13 — maturalne.

Funkcja \(f\) jest określona wzorem \(f(x)=\frac{x^3-8}{x-2}\) dla każdej liczby rzeczywistej \(x\neq 2\). Wartość pochodnej tej funkcji dla argumentu \(x=\frac{1}{2}\) jest równa

A. \(\frac{3}{4}\)

B. \(\frac{9}{4}\)

C. 3

D. \(\frac{54}{8}\)

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2025 r.