Zadanie - pochodna funkcji
Treść zadania:
Obliczyć pochodną funkcji
\(a) f(x)=-\frac{1}{2}\)
\(b) g(x)=x^{17}\)
\(c) h(x)=x^{\frac{1}{3}}\)
\( d) i(x)=x\)
\( e) j(x)=\sqrt{2}\)
Rozwiązanie zadania
a) Mamy tutaj do czynienia z funkcją stałą, a pochodna funkcji stałej jest równa zeru:
\(f'(x)=0\)
b) Korzystamy ze wzoru:
Mamy więc:
\(g'(x)=17x^{17-1}=17x^{16}\)
c) Korzystamy tutaj z tego samego wzoru, co wyżej:
Mamy więc:
\(h'(x)=\frac{1}{3}x^{\frac{1}{3}-1}=\frac{1}{3}x^{-\frac{2}{3}}=\frac{1}{3}\cdot \frac{1}{x^{\frac{2}{3}}}=\frac{1}{3\sqrt[3]{x^2}}\)
Skorzystano ze wzorów:
d) Korzystamy ze wzoru:
Mamy więc:
\(i'(x)=1\cdot x^{1-1}=x^0=1\)
e) Mamy tutaj do czynienia z funkcją stałą (pierwiastek z dwóch jest po prostu liczbą), a pochodna funkcji stałej jest równa zeru:
\(j'(x)=0\)
© medianauka.pl, 2010-09-08, ZAD-894
Zadania podobne
Zadanie nr 1.
Obliczyć pochodną funkcji \(f(x)=-x^2+x-1\) w punkcie \(x_0=-1\).
Zadanie nr 3.
Obliczyć pochodną funkcji \(f(x)=\frac{1}{x+1}\) w punkcie \(x_0=0\).
Zadanie nr 5.
Obliczyć pochodną funkcji \(f(x)=\begin{cases} x^2 \ dla \ x\geq 0 \\ -2x^2 \ dla \ x<0 \end{cases}\) w punkcie \(x_0=0\).
Zadanie nr 7.
Obliczyć pochodną funkcji:
\(a) f(x)=-x+5\)
\(b) g(x)=-5x^2+2\sqrt{x}\)
\( c) h(x)=\sin{x}+2\cos{x}\)
\( d) i(x)=-\frac{1}{x}-tgx\)
\( e) j(x)=3x^3-2x^2+x-1\)
Zadanie nr 8.
Obliczyć pochodną funkcji:
\(a) f(x)=x\sin{x}\)
\(b) g(x)=\sin^2{x}\)
\(c) h(x)=x\sqrt{x}\)
Zadanie nr 9.
Obliczyć pochodną funkcji:
a) \(f(x)=\frac{\sin{x}}{x}\)
b) \(f(x)=\frac{2x+1}{3x-1}\)
c) \(f(x)=\frac{\sin{x}}{\cos{x}}\)
Zadanie nr 10.
Obliczyć pochodną funkcji:
a) \(f(x)=\frac{\sqrt{x}}{x}\)
b) \(f(x)=\frac{5x^3-x+1}{x^2-1}\)
c) \(f(x)=\frac{5x^4-3x^2}{2x^3-1}\)
Zadanie nr 11.
Obliczyć pochodną funkcji \(f(x)=\frac{\sqrt[5]{x}}{10x^8}\).
Zadanie nr 12 — maturalne.
Funkcja \(f(x)=\frac{3x-1}{x^2+4}\) jest określona dla każdej liczby rzeczywistej \(x\). Pochodna tej funkcji jest określona wzorem:
A. \(f'(x)=\frac{-3x^2+2x+12}{(x^2+4)^2}\)
B. \(f'(x)=\frac{-9x^2+2x-12}{(x^2+4)^2}\)
C. \(f'(x)=\frac{3x^2-2x-12}{(x^2+4)^2}\)
D. \(f'(x)=\frac{9x^2-2x+12}{(x^2+4)^2}\)
Zadanie nr 13 — maturalne.
Funkcja \(f\) jest określona wzorem \(f(x)=\frac{x^3-8}{x-2}\) dla każdej liczby rzeczywistej \(x\neq 2\). Wartość pochodnej tej funkcji dla argumentu \(x=\frac{1}{2}\) jest równa
A. \(\frac{3}{4}\)
B. \(\frac{9}{4}\)
C. 3
D. \(\frac{54}{8}\)