Zadanie - działania na figurach

Treść zadania:

Dany jest okrąg \(k\) i prosta \(p\) przechodząca przez środek okręgu. Opisać figury: \(k\cup p, \ k\cap p, \ k\setminus p, \ p\setminus k\).


ksiązki Rozwiązanie zadania

Traktujemy okrąg i prostą jak zbiory punktów i przenosimy zasady działań na zbiorach na nasze zadanie, czyli jeżeli szukamy sumy zbiorów, to bierzemy pod uwagę takie elementy(punkty), które należą do jednego lub do drugiego zbioru, w przypadku iloczynu zbiorów szukamy takich punktów, które należą do pierwszego i do drugiego zbioru (część wspólna), a w przypadku różnicy zbiorów szukamy takich punktów które należą do pierwszego zbioru i nie należą do drugiego.

Rozwiązanie zostało przedstawione na rysunku, zaznaczone kolorem czerwonym.

\(k\cup p\)

figura 1

Zatem do sumy figur należą wszystkie punkty obu figur

\(k\cap p=\lbrace A, B \rbrace\)
figura 2

Iloczynem obu figur (częścią wspólną) są punkty A i B

\(k\backslash p\)
figura 3

W tej różnicy figur w wyniku otrzymujemy wszystkie punkty okręgu, za wyjątkiem punktów A i B (bo należą do prostej p)

\(p\backslash k\)
figura 4

W tej różnicy figur w wyniku otrzymujemy wszystkie punkty prostej, za wyjątkiem punktów A i B (bo należą do okręgu \(k\))


© medianauka.pl, 2010-10-25, ZAD-990

AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Dane są dowolne proste \(a\) i \(b\). Określić figury \(a\cup b, \ a\cap b, \ a\setminus b, \ b\setminus a\).

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Dane są dwa trójkąty \(t_1\) i \(t_2\) usytuowane względem siebie tak, jak pokazuje rysunek.

gwiazda

Zakreskować figury:

a) \(t_1\cup t_2\)

b) \(t_1\cap t_2\)

c) \(t_1\setminus t_2\)

d) \(t_1\setminus t_2\)

e) \((t_1\setminus t_2)\cup (t_2\setminus t_1)\)

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Ile maksymalnie prostych może wyznaczyć 10 punktów na płaszczyźnie? A ile w przestrzeni?

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Opisać za pomocą działań na zbiorach część zakreskowaną kół \(k_1, k_2, k_3\):

figury

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2023 r.